Answer:
2.05 x 10^8 m /s
Explanation:
c = 3 x 10^8 m/s
μ = c / v
where, μ is the refractive index, c be the velocity of light in air and v be the velocity of light in the medium.
μ = 1.461
1.461 = 3 x 10^8 / v
v = 3 x 10^8 / 1.461
v = 2.05 x 10^8 m /s
Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P =
where
f = focal length
Thus
f =
f = = + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:
where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,
Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
Answer:
Explanation:
For a convex mirror, the value of its image distance and its focal length are negative.
using the mirror formula 1/f = 1/u+1/v
f is the focal length = Radius of curvature/2 = 0.560/2
f= 0.28m
u is the object distance = 10.6m
v is the position of the image = ?
On substitution;
1/0.28 = 1/10.6 + 1/-v
3.57 = 0.094 - 1/v
3.57 - 0.094 = -1/v
3.476 = -1/v
v = -1/3.476
v = -0.2877m
B) Since the image distance is negative, this means that the image is an upright and a virtual image. All Upright images has their image distance to be negative.
C) Magnification = Image distance/object distance
Magnification = 0.2877/10.6
Magnification = 0.0271
Answer:
E=930.84 N/C
Explanation:
Given that
I = 1150 W/m²
μ = 4Π x 10⁻⁷
C = 2.999 x 10⁸ m/s
E= C B
C=speed of light
B=Magnetic filed ,E=Electric filed
Power P = I A
A=Area=4πr² ,I=Intensity
E=930.84 N/C
Therefore answer is 930.84 N/C
To find the magnitude Em of the electromagnetic waves at the top of the earth's atmosphere, we use the intensity of electromagnetic wave and solving the equation Em = sqrt(2Icμo), we can find the magnitude of Em in units of N/C.
To find the magnitude Em of the electromagnetic waves at the top of the Earth's atmosphere, we use the fact that the power received per unit area is the intensity I of the electromagnetic wave. According to the given information, this intensity is 1150 W/m2. The relationship between the intensity and electromagnetic fields is given by the equation I = 0.5 * E²/c * μo. Solving for Em, we get Em = sqrt(2Icμo), where μo = 4π × 10-7 T N/A² is the permeability of free space and c = 2.99792 × 10⁸ m/s is the speed of light.
Subbing in the given values, we can compute Em as:
Em = sqrt[2 * 1150 W/m² * 2.99792 × 10⁸ m/s * 4π × 10-7 T N/A²]
This computation will give the strength of the electric field at the top of the earth’s atmosphere in units of N/C.
#SPJ11
Answer:
The speed must a ball be thrown vertically from ground level to rise to a maximum height is 28.35 m/s.
Explanation:
Given;
maximum vertical height of the throw, H = 41 m
Apply the following kinematic equation;
V² = U² + 2gH
where;
V is the final speed with which the ball will rise to a maximum height
U is the initial speed of the ball = 0
g is acceleration due to gravity = 0
V² = U² + 2gH
V² = 0² + 2gH
V² = 2gH
V = √2gH
V = √(2 x 9.8 x 41)
V = 28.35 m/s
Therefore, the speed must a ball be thrown vertically from ground level to rise to a maximum height is 28.35 m/s.
Answer:
The magnitude of the horizontal displacement of the rock is 7.39 m/s.
Explanation:
Given that,
Initial speed = 11.5 m/s
Angle = 50.0
Height = 30.0 m
We need to calculate the horizontal displacement of the rock
Using formula of horizontal component
Put the value into the formula
Hence, The magnitude of the horizontal displacement of the rock is 7.39 m/s.
The question is about determining the horizontal displacement of a projectile based on the given initial speed and projection angle and the height of the launch. This can be calculated using the equations of motion, specifically those pertaining to projectile motion.
In this problem, we're dealing with projectile motion. The stone being thrown is the projectile in this case. The horizontal displacement, also known as range, of a projectile can be defined using the formula: range = (initial speed * time of flight) * cosθ, where θ is the angle of projection. The initial speed is given as 11.5 m/s and the angle as 50 degrees. Now, we need to calculate the time of flight. This can be found by the formula: time of flight = (2 * initial speed * sinθ) / g. Considering g, the acceleration due to gravity, as 9.8 m/s², we can find the time of flight and thus calculate the range. Always remember that while the vertical motion of a projectile is affected by gravity, the horizontal motion remains constant.
#SPJ12
Answer:
Explained
Explanation:
In order to retain atmosphere a planet needs to have gravity. A gravity sufficient enough to create a dense atmosphere around it, so that it can retain heat coming from sun. Mars has shallow atmosphere as its gravity is only 40% of the Earth's gravity. Venus is somewhat similar to Earth but due to green house effect its temperature is very high. Atmosphere has a huge impact on the planets ability to sustain life. Presence of certain kind gases make the atmosphere poisnous for life. The atmosphere should be such that it allows water to remain in liquid form and maintain an optimum temperature suitable for life.