Answer:
The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L
Explanation:
Let the initial concentration of the BOD = C₀
Concentration of BOD at any time or point = C
dC/dt = - KC
∫ dC/C = -k ∫ dt
Integrating the left hand side from C₀ to C and the right hand side from 0 to t
In (C/C₀) = -kt + b (b = constant of integration)
At t = 0, C = C₀
In 1 = 0 + b
b = 0
In (C/C₀) = - kt
(C/C₀) = e⁻ᵏᵗ
C = C₀ e⁻ᵏᵗ
C₀ = 75 mg/L
k = 0.05 /day
C = 75 e⁻⁰•⁰⁵ᵗ
So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day
We calculate how many days it takes the river to reach 50 km downstream
Velocity = (displacement/time)
15 = 50/t
t = 50/15 = 3.3333 days
So, we need the C that corresponds to t = 3.3333 days
C = 75 e⁻⁰•⁰⁵ᵗ
0.05 t = 0.05 × 3.333 = 0.167
C = 75 e⁻⁰•¹⁶⁷
C = 63.5 mg/L
The BOD concentration 50 km downstream from the wastewater treatment plant is approximately 15.865 mg/L.
To calculate the BOD concentration 50 km downstream, we need to consider the rate of dilution due to the flow of the river and the first-order reaction that destroys BOD. The concentration of BOD downstream can be calculated using the equation C2 = C1 * exp(-k * d/v), where C1 is the initial concentration, k is the rate constant, d is the distance, and v is the velocity of the river.
Plugging in the given values, we have C2 = 75 * exp(-0.05 * 50/15), which gives us a BOD concentration of approximately 15.865 mg/L 50 km downstream from the wastewater treatment plant.
Learn more about downstream here:
#SPJ3
Answer:
0.557 s
Explanation:
Given:
v₀ = 5.46 m/s
v = 0 m/s
a = -9.8 m/s²
Find: t
v = at + v₀
0 m/s = (-9.8 m/s²) t + 5.46 m/s
t = 0.557 s
Answer:
Consider a proton travelling due west at a velocity of 5×10^5m/s. Assuming that the rth magnetic field has a strength of 5x10^-5Tand is directed due south calculate li) the magnitude of the force on the proton (q= 1.6x10^-9C)
Explanation:
car can accelerate at -3.5 m/p/s, how far would it take her to stop?
Answer:
dfmwekognjioq 4eijqgi24gno3p2qtijoq2 gjo23ijgto32tneqew gqewkgnoweqgmnlqwe gwjoegkqwji4toqn34goti34
Explanation:
Answer:
The acceleration is 2.448 meters per square second and is vertically upward.
Explanation:
The Free Body Diagram of the plastic ball in the liquid is presented in the image attached below. By Second Newton's Law, we know that forces acting on the plastic ball is:
(1)
Where:
- Buoyant force, measured in newtons.
- Mass of the plastic ball, measured in kilograms.
- Gravitational acceleration, measured in meters per square second.
- Net acceleration, measured in meters per square second.
If we know that , and , then the net acceleration of the plastic ball is:
The acceleration is 2.448 meters per square second and is vertically upward.
Answer:
Explanation:
P(v) = 16 / v + 10⁻³ v³
differentiating on both sides
dP / dt = - 16 / v² + 3 x 10⁻³ v²
For maxima and minima , the condition is
dP / dt = - 16 / v² + 3 x 10⁻³ v² = 0
v² = 160 / 3 x 10²
v² = 73 m/s
v = 8.54 m /s
To know the condition of minima
again differentiating
d²P / dt² = - 16 x -2 / v² + 6 x 10⁻³ x v
= 32 / v³ + 6 x 10⁻³ x v
= + ve quantity
So at v_p = 8.54 m /s , power consumption will be minimum .
Answer:
???
Explanation: