Answer:
The detailed explanations is attached below
Explanation:
What is applied is the De brogile equation and the equation showing a relationship between Energy, speed of light and wavelength.
The explanation is as attached below.
Answer:
paying too much on the black market instead of getting a prescription
Explanation:
i just took the quiz
Answer:
Paying too much on the black market instead of getting a prescription
Explanation:
The rest of the options are risks associated with using legal drugs without medical supervision.
To find the critical angle, we need to consider the forces acting on the system. The weight and frictional force must be taken into account. By equating the forces and solving for the critical angle, we can determine at what angle the system just begins to move.
To determine the critical angle for the system shown, we need to consider the forces acting on the objects. The force pulling m1 downwards is its weight, which is equal to its mass multiplied by the acceleration due to gravity. The force preventing m1 from moving is the frictional force, which is equal to the coefficient of friction multiplied by the normal force. The normal force is the force exerted by the surface perpendicular to it, which is equal to the weight of m2 minus the weight of the hanging part of the rope.
At the critical angle, the force of friction is at its maximum value, which is equal to the coefficient of friction multiplied by the normal force. The force pulling m1 downwards is equal to the force of friction. By equating these forces and solving for the critical angle, we can find the answer.
#SPJ2
Answer:
hello your question is incomplete attached below is the missing circuit diagram
answer : 3 unique currents
Explanation:
From the circuit attached below it can be seen that there will be Three(3) unique currents flowing through this circuit and the Branches where this currents could differ is at the Three(3) resistors
In order to solve this problem it is necessary to apply the concepts related to Newton's second law and the respective representation of the Forces in their vector components.
The horizontal component of this force is given as
F_x = Fcos(6.7)
While the vertical component of this force would be
F_y = Fsin(6.7)
In the vertical component, the sum of Force indicates that:
The Normal Force would therefore be equivalent to the weight and vertical component of the applied force, therefore:
In the horizontal component we have that the Force of tension in its horizontal component is equivalent to the Force of friction:
Using the previously found expression of the Normal Force and replacing it we have to,
Replacing,
Finally the acceleration would be by Newton's second law:
Therefore the greatest acceleration the man can give the airplane is
The tension force that the rope exerts on block B is 62.3 N, the tension force that the rope exerts on block A is 1.89 N, and the moment of inertia of the pulley for rotation about the axle on which it is mounted is .
Given :
a) First, determine the acceleration of the B block.
Now, apply Newton's second law of motion in order to determine the tension force that the rope exerts on block B.
b) Now, again apply Newton's second law of motion in order to determine the tension force that the rope exerts on block A.
c) The sum of the torque in order to determine the moment of inertia of the pulley for rotation about the axle on which it is mounted.
Now, substitute the values of the known terms in the above expression.
For more information, refer to the link given below:
Answer:
(a) 62.3 N
(b) 1.89 N
(c) 0.430 kg m²
Explanation:
(a) Find the acceleration of block B.
Δy = v₀ t + ½ at²
1.80 m = (0 m/s) (2.00 s) + ½ a (2.00 s)²
a = 0.90 m/s²
Draw a free body diagram of block B. There are two forces:
Weight force mg pulling down,
and tension force Tb pulling up.
Sum of forces in the -y direction:
∑F = ma
mg − Tb = ma
Tb = m (g − a)
Tb = (7.00 kg) (9.8 m/s² − 0.90 m/s²)
Tb = 62.3 N
(b) Draw a free body diagram of block A. There are three forces:
Weight force mg pulling down,
Normal force N pushing up,
and tension force Ta pulling right.
Sum of forces in the +x direction:
∑F = ma
Ta = ma
Ta = (2.10 kg) (0.90 m/s²)
Ta = 1.89 N
(c) Draw a free body diagram of the pulley. There are two forces:
Tension force Tb pulling down,
and tension force Ta pulling left.
Sum of torques in the clockwise direction:
∑τ = Iα
Tb r − Ta r = Iα
(Tb − Ta) r = I (a/r)
I = (Tb − Ta) r² / a
I = (62.3 N − 1.89 N) (0.080 m)² / (0.90 m/s²)
I = 0.430 kg m²
Answer:
Explanation:
Given:
(A)
height between John and William,
Using the equation of motion:
where:
v_J = final velocity of John at the end of the slide
u_J = initial velocity of John at the top of the slide = 0
Now putting respective :
Now using the law of conservation of momentum at the bottom of the slide:
Sum of initial momentum of kids before & after collision must be equal.
where: v = velocity with which they move together after collision
is the velocity with which they leave the slide.
(B)
Now we find the force along the slide due to the body weight:
Hence the net force along the slide:
Now the acceleration of John:
Now the new velocity:
Hence the new velocity is slower by