The range of the marble when fired horizontally from 1.8m above the ground can be calculated using the equations of motion in physics. First, the time of flight is found using the vertical motion and then the range is calculated using the time of flight and the initial velocity determined from the vertical launch. The marble's range is approximately 8.4m.
To solve this problem, we need to make use of the concept of projectile motion in physics. The most crucial part in solving this type of problem is to break the motion into its horizontal and vertical components.
First, we find the time the projectile is in the air using the vertical motion. Ignoring air resistance, the time a projectile is in the air is determined by the initial vertical velocity and the height from which it drops. Here, the height is given as 1.8m and we can use the equation h = 0.5gt^2, where h is the height, g is the acceleration due to gravity (9.8 m/s^2), and t is the time. After calculating, we find that the time the marble is in the air is about 0.6 seconds.
Now, we can use the time to find the horizontal distance traveled by the marble, a.k.a the range. The range is given by R = vt, where v is the horizontal velocity, which is the same as the initial vertical velocity. From the problem, we know the marble reached a height of 9.0m when shot vertically, which we can use to find the initial velocity using the equation v = sqrt(2gh), where g is the acceleration due to gravity (9.8 m/s^2) and h is the height. We find that the initial velocity is about 14 m/s.
So, the range R = vt = 14m/s * 0.6s = 8.4m. Therefore, the marble's range when fired horizontally from 1.8m above the ground is approximately 8.4m.
#SPJ3
Answer:
R = 8.94 10⁻² Ω/m, R_sp / R_total = 44.8
Explanation:
The resistance of a metal cable is
R = ρ L / A
The area of a circle is
A = π R²
The resistivity of copper is
ρ = 1.71 10⁻⁸ ohm / m
Let's calculate
R = 1.71 10⁻⁸ 4.27 / (π (0.51 10⁻³)²)
R = 8.94 10⁻² Ω/m
Each bugle needs two wire, phase and ground
The total wire resistance is
R_total = 2 R
R_total = 17.87 10⁻² Ω
Let's look for the relationship between the resistance of the bugle and the wire
R_sp / R_total = 8 / 17.87 10⁻²
R_sp / R_total = 44.8
The resistance of the speaker wire can be calculated using the formula for the resistance of a wire, taking into account the resistivity of copper, the length and thickness of the wire, and whether a single or pair of wires is used.
The question is asking you to find the minimum resistance of a copper wire given its diameter and length, plus the resistance of the speaker it's connected to. Resistance of a wire is calculated using the formula R=ρL/A, where R is the resistance, ρ (rho) is the resistivity of the material (in this case, copper), L is the length of the wire, and A is the cross-sectional area of the wire.
First, you need to find the area of the 0.51 mm diameter wire. The area (A) of a wire is given by the formula π(d/2)^2 where d is the diameter of the wire. After calculating the area, use the formula R=ρL/A to calculate the resistance. For copper wire at 20°C, ρ is approximately 1.68 × 10^-8 Ω·m. Substituting these values into the formula will give you the resistance of the wire in ohms.
Note: you may need to consider whether you have just a single wire or a pair, since two wires are typically required to connect a speaker. If a pair is used, each wire will carry half the current, which affects the total resistance.
#SPJ12
To solve this problem we will apply the concepts related to the change in length in proportion to the area and volume. We will define the states of the lengths in their final and initial state and later with the given relationship, we will extrapolate these measures to the area and volume
The initial measures,
(Surface of a Cube)
The final measures
Given,
Now applying the same relation we have that
The relation with volume would be
Volume of the cube change by a factor of 2.83
Answer:
Explanation:
The mass balance is an application of conservation of mass, to the analysis of physical system. This is given in an equation form as
Input = Output + Accumulation
The conservation law that is used in this analysis of the system actually depends on the context of the problem. Nevertheless, they all revolve around conservation of mass. By conservation of mass, I mean that the fact that matter cannot disappear or be created spontaneously.
Answer:
time is 32 s and speed is 304.3 m/s
Explanation:
Height, h = 146 m
speed, u = 14 m/s
Angle, A = 43 degree
Let it hits the ground after time t.
Use second equation of motion
Time cannot be negative so the time is t = 32 s .
The vertical velocity at the time of strike is
v' = u sin A - g t
v' = 14 sin 43 - 9.8 x 32 = 9.5 - 313.6 = - 304.1 m/s
horizontal velocity
v'' = 14 cos 43 =10.3 m/s
The resultant velocity at the time of strike is
Answer:
see below
Explanation:
The triangle stands for the change in
We would change the change in x
Answer:
ΔThis is the symbol of Delta which means Change
and x is length/distance/position.
Thus,Δxstands for Change in length/distance/position.
-TheUnknownScientist
Answer:
0.114
Explanation:
There are two forces acting on the cart in the direction along the cart:
- The component of the gravitational force in the direction parallel to the ramp, , down along the ramp
- The force of friction, , up along the ramp
So the equation of motion along this direction is:
(1)
where
m is the mass of the cart
is the acceleration due to gravity
is the angle of the ramp
is the coefficient of kinetic friction
N is the normal force exerted by the ramp on the cart
is the acceleration of the cart
The normal force can be found from the equation of the forces along the direction perpendicular to the ramp; in fact, the normal force is balanced by the component of the weight perpendicular to the ramp, so we have:
From which we get:
Substituting into (1),
And solving for , we find the coefficient of friction: