The normal is a line perpendicular to the reflecting surface at the point of incidence.

Answers

Answer 1
Answer:

Answer:

True

Explanation:

The normal line is defined as the line which is perpendicular to the reflecting surface at the point where the incident ray meet with the reflecting surface.

The angle of incident is defined as the angle which is subtended by the incident ray with respect to the normal ray by consider the normal ray as the base line and angle is measured from the point where incident ray is incident on the reflecting surface of the mirror.

Similarly reflecting ray can be defined as the ray which is reflected after the incident of a ray and the angle subtended by the reflecting ray is measure with respect to normal ray by considering normal ray as a base line.

Therefore, the normal ray is the perpendicular line to the reflecting surface at the point of incidence.


Related Questions

Explain what happent to the pressure exerted by an object when the area over which it is exerted:a) increase b) decrease​
A force of 240.0 N causes an object to accelerate at 3.2 m/s2. What is the mass of the object?
What unit is used to measure energy when calculating specific heat capacity? Give the abbreviation, not the full name.
A 600W toaster, 1200W iron and a 100W bulb are all connected to household 120V circuit. a) find the current drawn by each applianceb) the resistance of the heating element in the ironc) the total cost of running all of the appliances non-stop for 5 days if the electricity rate is $0.1 per KW-Hr.
Which two types of energy does a book have as it falls to the floor

Consider an astronomical telescope with a 48 centimeter focal-length objective lens and a 10 centimeter focal-length eyepiece. Approximately how many centimeters apart should the lenses be placed

Answers

Answer:

D = 58 cm

Explanation:

Given that,

Focal length of the objective lens, f_o=48\ cm

Focal length of the eye piece, f_e=10\ cm

We need to find how many cm apart should the lenses be placed. Let d be the distance between lenses. It is equal to the sum of focal lengths of objective lens and eye-piece

D = 48 cm + 10 cm

= 58 cm

Hence, the object is placed at a distance of 58 cm.

Final answer:

In an astronomical telescope, the lenses should be placed at a distance equal to the sum of their focal lengths. In this case, this distance would be 58 cm.

Explanation:

In an astronomical telescope, the distance between the objective lens and the eyepiece should be equal to the sum of their focal lengths for the telescope to produce clear and sharp images. Here, the focal length of the objective lens is 48 cm and the focal length of the eyepiece is 10 cm.

Therefore, calculating: Objective lens focal length + Eyepiece focal length = 48 cm (objective) + 10 cm (eyepiece) = 58 cm

This means that the objective lens and the eyepiece should be approximately 58 centimeters apart.

Learn more about Telescope here:

brainly.com/question/19978658

#SPJ3

When UV light of wavelength 248 nm is shone on aluminum metal, electrons are ejected withmaximum kinetic energy 0.92 eV. What maximum wavelength of light could be used to ejectelectrons from aluminum

Answers

Answer:

The maximum wavelength of light that could liberate electrons from the aluminum metal is 303.7 nm

Explanation:

Given;

wavelength of the UV light, λ = 248 nm = 248 x 10⁻⁹ m

maximum kinetic energy of the ejected electron, K.E = 0.92 eV

let the work function of the aluminum metal = Ф

Apply photoelectric equation:

E = K.E + Ф

Where;

Ф is the minimum energy needed to eject electron the aluminum metal

E is the energy of the incident light

The energy of the incident light is calculated as follows;

E = hf = h(c)/(\lambda) \n\nwhere;\n\nh \ is \ Planck's \ constant = 6.626 * 10^(-34) \ Js\n\nc \ is \ speed \ of \ light = 3 * 10^(8) \ m/s\n\nE = ((6.626* 10^(-34))* (3* 10^8))/(248* 10^(-9)) \n\nE = 8.02 * 10^(-19) \ J

The work function of the aluminum metal is calculated as;

Ф = E - K.E

Ф = 8.02 x 10⁻¹⁹  -  (0.92 x 1.602 x 10⁻¹⁹)

Ф =  8.02 x 10⁻¹⁹ J   -  1.474 x 10⁻¹⁹ J

Ф = 6.546 x 10⁻¹⁹ J

The maximum wavelength of light that could liberate electrons from the aluminum metal is calculated as;

\phi = hf = (hc)/(\lambda_(max)) \n\n\lambda_(max) = (hc)/(\phi) \n\n\lambda_(max) = ((6.626* 10^(-34)) * (3 * 10^8) )/(6.546 * 10^(-19)) \n\n\lambda_(max) = 3.037 * 10^(-7) m\n\n\lambda_(max) = 303.7 \ nm

A^^\-> points in the -x direction with a magnitude of 21. What is the y component of A^^\->

Answers

Answer:

A_y=-36.37^(\circ)

Explanation:

Given that,

Vector A points in the -x direction with a magnitude of 21.

Let the x component is making an angle of 60 degrees with negative x axis. The x component of a vector is given by :

A_x=A\ cos\theta

-21=A\ cos(60)

A=(-21)/(cos(60))

A = -42 units

The y component of a vector is given by :

A_y=A\ sin\theta

A_y=-42\ sin(60)

A_y=-36.37^(\circ)

So, the y component of vector A is (-36.37) degrees. Hence, this is the required solution.

A section of highway has the following flowdensity relationship q = 50k − 0.156k2 [with q in veh/h and k in veh/mi]. What is the capacity of the highway section, the speed at capacity, and the density when the highway is at one-quarter of its capacity?

Answers

(a) The capacity will be "4006.4 veh/h".

(b) The speed at capacity be "25 mph".

(c) The density will be "299 veh/mi".

Given:

  • q = 50k - 0.156 k^2

At max. flow density,

  • (dd)/(dk) =0
  • ((dq)/(dt) ) = 50-0.321k =0

(a)

k = ((50)/(0.312) )

     = 160.3 \ or \ 160 \ veh/mi

By substituting the value,

q = 50k-0.156k^2

     = 50* 160.3-0.156* (160.3)^2

     = 4006.4 \ veh/h

(b)

The speed will be:

U = (q)/(k)

      = (4006.4)/(160.3)

      = 25 \ mph

(c)

The density be:

1001.6 = 50k-0.156k^2

  0.156k^2-50k+1001.6 =0

  k = 21.5 \ veh/mi \ or \ 299 \ veh/mi

Thus the responses above are correct.

Find out more information about density here:

brainly.com/question/6838128

Answer:

a) capacity of the highway section = 4006.4 veh/h

b) The speed at capacity = 25 mph

c) The density when the highway is at one-quarter of its capacity = k = 21.5 veh/mi or 299 veh/mi

Explanation:

q = 50k - 0.156k²

with q in veh/h and k in veh/mi

a) capacity of the highway section

To obtain the capacity of the highway section, we first find the k thay corresponds to the maximum q.

q = 50k - 0.156k²

At maximum flow density, (dq/dk) = 0

(dq/dt) = 50 - 0.312k = 0

k = (50/0.312) = 160.3 ≈ 160 veh/mi

q = 50k - 0.156k²

q = 50(160.3) - 0.156(160.3)²

q = 4006.4 veh/h

b) The speed at the capacity

U = (q/k) = (4006.4/160.3) = 25 mph

c) the density when the highway is at one-quarter of its capacity?

Capacity = 4006.4

One-quarter of the capacity = 1001.6 veh/h

1001.6 = 50k - 0.156k²

0.156k² - 50k + 1001.6 = 0

Solving the quadratic equation

k = 21.5 veh/mi or 299 veh/mi

Hope this Helps!!!

Electrons with energy of 25 eV have a wavelength of ~0.25 nm. If we send these electrons through the same two slits (d = 0.16 mm) we use to produce a visible light interference pattern what is the spacing (in micrometer) between maxima on a screen 3.3 m away?

Answers

Answer:

The spacing is 5.15 μm.

Explanation:

Given that,

Electron with energy = 25 eV

Wave length = 0.25 nm

Separation d= 0.16 mm

Distance D=3.3 m

We need to calculate the spacing

Using formula of width

\beta=(\lambda D)/(d)

Put the value into the formula

\beta=(0.25*10^(-9)*3.3)/(0.16*10^(-3))

\beta=5.15*10^(-6)\ m

\beta=5.15\ \mu m

Hence, The spacing is 5.15 μm.

Final answer:

To calculate the spacing between maxima in a double slit interference pattern, we use the formula x = L * λ / d. Converting the given units to meters and plugging the values into the formula, we find that the spacing between maxima on the screen is approximately 5.14 micro meters.

Explanation:

To calculate the spacing between maxima, we can utilize the formula for double slit interference, θ = λ/d where λ represents the wavelength of the electron, d is the distance between the two slits, and θ is the angle of diffraction. Considering the small angle approximation for tan θ ≈ θ, we get x = L * λ / d, where x is the distance between maxima on the screen, and L is the distance from the slits to the screen.

Firstly, the electron's wavelength needs to be converted from nm to m, resulting in λ = 0.25 * 10^-9 m. Similarly, the slit separation d should be converted from mm to m, giving d = 0.16 * 10^-3 m. Inserting these values into the formula along with L = 3.3 m, we can solve for x.

x = (3.3 m * 0.25 * 10^-9 m) / 0.16 * 10^-3 m =~ 5.14 μm

So, the spacing between maxima on the screen is approximately 5.14 micrometers.

Learn more about Double Slit Interference here:

brainly.com/question/32574386

#SPJ11

Two particles, one with charge -6.29 × 10^-6 C and one with charge 5.23 × 10^-6 C, are 0.0359 meters apart. What is the magnitude of the force that one particle exerts on the other?

Answers

Answer:

Force, F = −229.72 N

Explanation:

Given that,

First charge particle, q_1=-6.29* 10^(-6)\ C

Second charged particle, q_2=5.23* 10^(-6)\ C

Distance between charges, d = 0.0359 m

The electric force between the two charged particles is given by :

F=k(q_1q_2)/(d^2)

F=9* 10^9* (-6.29* 10^(-6)* 5.23* 10^(-6))/((0.0359)^2)

F = −229.72 N

So, the magnitude of force that one particle exerts on the other is 229.72 N. Hence, this is the required solution.