Answer:
The gel that is applied before ultrasonic imaging is a conducting material. It acts as a medium between transducer and skin. The ultrasonic waves easily transmit from the probe to the tissues because of gel. A tight bond is created between the probe and skin layer and the gel acts as a coupling agent. The density of the gel is similar to the skin layer. This reduces the attenuation of the waves. A thin layer of gel is applied which fills the air gaps and helps in transmission of waves to the tissues. Hence, the technician apply ultrasound gel to the patient before beginning the examination
The gel has a density similar to that of skin, so very little of the incident ultrasonic wave is lost by reflection.
The speed of the combined object after collision is 0 m/s.
Total momentum before collision = total momentum after collision
m₁u₁ + m₂u₂ = (m₁ + m₂)a
m₁ = object 1 mass = m, u₁ = velocity of object 1 before collision = v, m₂ = mass of object 2 = 3m, u₂ = velocity of object 2 before collision = -v/3, a = velocity after collision
mv + 3m(-v/3) = (m + 3m)a
mv - mv = 4ma
0 = 4ma
a = 0 m/s
The speed of the combined object after collision is 0 m/s.
Find out more at: brainly.com/question/17166755
Answer:
the answer is 0 m/s
Explanation:
This question is describing the law of conservation of momentum
First object has mass =m
velocity of first object = v
second object = 3m
velocity of second object = v/3
the law of conservation of momentum is expressed as
m1V1 - m2V2 = (m1+ m2) V
substituting the parameters given;
making V as the subject of formular
V =
V =
V =
= 0 m/s
Energy decreases with decreasing wavelength and decreasing frequency.
B.
Energy increases with decreasing wavelength and increasing frequency.
C.
Energy increases with decreasing wavelength and decreasing frequency.
D.
Energy decreases with increasing wavelength and increasing frequency.
Answer:
B. Energy increases with decreasing wavelength and increasing frequency.
Explanation:
Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
Answer:
15.01 Liters
Explanation:
T₁ = Initial temperature = 25°C = 298.15 K
T₂ = Final temperature = 100°C = 373.15 K
V₁ = Initial volume = 12 mL
Here, pressure is constant so we apply Charles Law
∴ Final volume at 100°C is 15.01 Liters.
Answer:
Work = 1167.54 J
Explanation:
The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:
Gain in K.E = Loss in P.E + Work
(0.5)(m)(Vf² - Vi²) - mgh = Work
where,
m = mass of boy = 60 kg
Vf = Final Speed = 8.5 m/s
Vi = Initial Speed = 1.6 m/s
g = 9.8 m/s²
h = height drop = 1.57 m
Therefore,
(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work
Work = 2090.7 J - 923.16 J
Work = 1167.54 J
Answer:
N
N
Explanation:
= 1 A
= 4 A
= distance between the two wire = 5 m
= Force per unit length acting between the two wires
Force per unit length acting between the two wires is given as
N
= distance of each wire from the midpoint = 2.5 m
Magnetic field midway between the two wires is given as