Answer: The magnitude of torque is 38.7Nm
Explanation: Please see the attachment below
The magnitude of the torque on the door about its h1nges due to the applied force is 38.7 Nm.
The magnitude of the torque on the door about its h1nges due to the applied force is calculated by applying the following formula as shown below;
τ = rF
where;
The given parameters include;
perpendicular distance, r = 86 cm = 0.86 m
the applied force , F = 45 N
The magnitude of the torque on the door about its h1nges due to the applied force is calculated as;
τ = rF
τ = 0.86 m x 45 N
τ = 38.7 Nm
Learn more about torque here: brainly.com/question/30338159
#SPJ3
Answer:
F = M2 ω^2 R centripetal force of sun on planet
ω = (F / (M2 R))^1/2 = 2 pi f = 2 pi / P where P is the period
P = 2 pi (M2 * R / F)^1/2
F = G M1 M2 / R^2 gravitational force on planet
P = 2 pi {R^3 / (G M1)]^1/2
P = 6.28 [(2.0E11)^3 / (6.67E-11 * 3.0E30)]^1/2
P = 6.28 (8 / 20)^1/2 E7 = 3.9E7 sec
1 yr = 3600 * 24 * 365 = 3.15E7 sec
P = 3.9 / 3.2 = 1.2 years
0.056320
0.56320
5,632
56,320
Answer:
The answer would be D 56,320
Explanation:
Explanation:
It is given that,
Spring constant of the spring, k = 475 N/m
Mass of the block, m = 2.5 kg
Elongation in the spring from equilibrium, x = 5.5 cm
(a) We know that the maximum elongation in the spring is called its amplitude. So, the amplitude for the resulting oscillation is 5.5 cm.
(b) Let is the angular frequency. It is given by :
(c) Let T is the period. It is given by :
T = 0.45 s
(d) Frequency,
f = 2.23 Hz
(e) Let v is the maximum value of the block's velocity. It is given by :
The value of acceleration is given by :
Hence, this is the required solution.
The amplitude of the block-spring system is 0.055 m, with an angular frequency of 13.77 rad/s, and a frequency of approximately 2.19 Hz. The system has a period of approximately 0.46 s, with the maximum velocity being 0.76 m/s, and the maximum acceleration being 189 m/s².
In this block-spring system, we can determine the oscillation properties with the given parameters: mass (m = 2.50 kg), spring constant (k = 475 N/m), and displacement (x = 5.50 cm = 0.055 m).
#SPJ3
Answer:43.34 m
Explanation:
Given
acceleration(a)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at
After this object will start moving under gravity
height reached in first 6 s
s=36 m
After fuel run out distance traveled in upward direction is
here v=0
u=12 m/s
Answer:
4.93 m
Explanation:
According to the question, the computation of the height is shown below:
But before that first we need to find out the speed which is shown below:
As we know that
= 9.92 m/s
Now
98.4064 = 19.96 × height
So, the height is 4.93 m
We simply applied the above formulas so that the height i.e H could arrive
The height of the water slide is 5.04 meters.
The problem described in this question involves a water slide, where swimmers start from rest at the top and leave the slide traveling horizontally. To determine the height of the slide, we can use the equations of motion in the horizontal direction. The horizontal displacement (x) is given as 5.00 m and the time (t) is given as 0.504 s. Assuming no friction or air resistance, we can use the equation x = v*t, where v is the horizontal velocity. Rearranging the equation, we can solve for v, which is equal to x/t. Substituting the given values, we have v = 5.00 m / 0.504 s = 9.92 m/s. The horizontal velocity (v) is constant throughout the motion, so we can use the equation v = sqrt(2*g*H), where g is the acceleration due to gravity (9.8 m/s^2) and H is the height of the slide. Rearranging the equation, we can solve for H, which is equal to v^2 / (2*g). Substituting the known values, we have H = (9.92 m/s)^2 / (2*9.8 m/s^2) = 5.04 m.