Answer:
The period of the pendulum is
Explanation:
The diagram illustrating this setup is shown on the first uploaded image
From the question we are told that
The length of the rod is
The diameter of the ring is
The distance of the hole from the one end
From the diagram we see that point A is the center of the brass ring
So the length from the axis of rotation is mathematically evaluated as
Now the period of the pendulum is mathematically represented as
Answer:
0.31
Explanation:
horizontal force, F = 750 N
mass of crate, m = 250 kg
g = 9.8 m/s^2
The friction force becomes applied force = 750 N
According to the laws of friction,
Friction force = μ x Normal reaction of the surface
here, μ be the coefficient of friction
750 = μ x m g
750 = μ x 250 x 9.8
μ = 0.31
Thus, the coefficient of static friction is 0.31.
Based on the calculatins, the coefficient of static friction is equal to: D. 0.31.
Given the following data:
Force = 750 Newton.
Mass = 250 kg.
Acceleration due to gravity = 9.8
Mathematically, the staticfrictional force acting on an object is giving by this formula:
Where:
Substituting the given parameters into the formula, we have;
Read more on force here: brainly.com/question/1121817
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".
Answer:
1.26812 N
Explanation:
= Mass of toy =
= Length of string =
= Period of rotation =
Time period is given by
The rotational velocity is 1.3792 m/s
The tension in the rope will be the centripetal force acting on the toy
The tension in the string is 1.26812 N.
Answer:
The magnitude of the friction force exerted on the box is 2.614 newtons.
Explanation:
Since the box is sliding on a rough horizontal floor, then it is decelerated solely by friction force due to the contact of the box with floor. The free body diagram of the box is presented herein as attachment. The equation of equilbrium for the box is:
(Eq. 1)
Where:
- Kinetic friction force, measured in newtons.
- Mass of the box, measured in kilograms.
- Acceleration experimented by the box, measured in meters per square second.
By applying definitions of weight () and uniform accelerated motion (), we expand the previous expression:
And the magnitude of the friction force exerted on the box is calculated by this formula:
(Eq. 1b)
Where:
- Weight, measured in newtons.
- Gravitational acceleration, measured in meters per square second.
- Initial speed, measured in meters per second.
- Final speed, measured in meters per second.
- Time, measured in seconds.
If we know that , , , and , the magnitud of the kinetic friction force exerted on the box is:
The magnitude of the friction force exerted on the box is 2.614 newtons.
The magnitude of the friction force acting on the box is determined by calculating the box's acceleration, establishing its mass based on its weight information, and applying these values in Newton's second law. The calculated value is 2.62 N.
To determine the magnitude of the friction force, we first have to compute the acceleration of the box. Acceleration (a) can be found using the formula 'final velocity - initial velocity / time'. Since the final velocity is 0 (the box stops), and the initial velocity is 1.37 m/s, and the time is 2.8 s, we get: a = (0 - 1.37) / 2.8 = -0.49 m/s^2. The negative sign indicates deceleration.
Next, we use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration. The net force in this case is the frictional force because there is no other force acting on the box in the horizontal direction. However, we do not know the mass of the box, but we do know its weight, and weight = mass x gravitational acceleration (g). So mass = weight/g = 52.4N / 9.8m/s^2 = 5.35 kg.
Lastly, we substitute the mass and deceleration into Newton's second law to find the frictional force (f): f = mass x deceleration = 5.35kg x -0.49m/s^2 = -2.62 N. Again, the negative sign indicates that the force acts opposite to the direction of motion. Thus, the frictional force magnitude is 2.62 N.
#SPJ3
This function might represent the lateral displacement of a string, a local electric field, the position of the surface of a body of water, or any of a number of other physical manifestations of waves.
1. Find ye(x) and yt(t). Keep in mind that yt(t) should be a trigonometric function of unit amplitude.
2. At the position x=0, what is the displacement of the string (assuming that the standing wave ys(x,t) is present)?
3. At certain times, the string will be perfectly straight. Find the first time t1>0 when this is true.
4. Which one of the following statements about the wave described in the problem introduction is correct?
A. The wave is traveling in the +x direction.
B. The wave is traveling in the −x direction.
C. The wave is oscillating but not traveling.
D. The wave is traveling but not oscillating.
Which of the expressions given is a mathematical expression for a wave of the same amplitude that is traveling in the opposite direction? At time t=0this new wave should have the same displacement as y1(x,t), the wave described in the problem introduction.
A. Acos(kx−ωt)
B. Acos(kx+ωt)
C. Asin(kx−ωt)
D. Asin(kx+ωt)
The definition of standing wave and trigonometry allows to find the results for the questions about the waves are:
1. For the standing wave its parts are: spatial and
temporal part
2. The string moves with an oscillating motion y = A’ cos wt.
3. Thefirst displacement is zero for
4. the correct result is:
A. The wave is traveling in the +x direction.
5. The correct result is:
D. Asin(kx+ωt)
Traveling waves are periodic movements of the media that transport energy, but not matter, the expression to describe it is:
y₁ = A sin (kx -wt)
Where A is the amplitude of the wave k the wave vector, w the angular velocity and x the position and t the time.
1. Ask us to find the spatial and temporal part of the standing wave.
To form the standing wave, two waves must be added, the reflected wave is:
y₂ = A sin (kx + wt)
The sum of a waves
y = y₁ + y₂
y = A (sin kx-wt + sin kx + wt)
We develop the sine function and add.
Sin (a ± b) = sin a cos b ± sin b cos a
The result is:
y = 2A sin kx cos wt
They ask that the function be unitary therefore
The amplitude of each string
A_ {chord} = A_ {standing wave} / 2
The spatial part is
= A 'sin kx
The temporary part is:
= A ’cos wt
2. At position x = 0, what is the displacement of the string?
y = A ’cos wt
The string moves in an oscillating motion.
3. At what point the string is straight.
When the string is straight its displacement is zero x = 0, the position remains.
y = A ’cos wt
For the amplitude of the chord to be zero, the cosine function must be zero.
wt = (2n + 1)
the first zero occurs for n = 0
wt =
t =
4) The traveling wave described in the statement is traveling in the positive direction of the x axis, therefore the correct statement is:
A. The wave is traveling in the +x direction.
5) The wave traveling in the opposite direction is
y₂ = A sin (kx + wt)
The correct answer is:
D. Asin(kx+ωt)
In conclusion using the definition of standing wave and trigonometry we can find the results for the questions about the waves are:
1. For the standing wave its parts are: spatial and
temporal part
2. The string moves with an oscillating motion y = A’ cos wt.
3. Thefirst displacement is zero for
4. the correct result is:
A. The wave is traveling in the +x direction.
5. The correct result is:
D. Asin(kx+ωt)
Learn more about standing waves here: brainly.com/question/1121886
Answer:
The work done in stretching the spring is 0.875 J.
Explanation:
Given that,
Force = 140 N
Natural length = 60-40 = 20 cm
Stretch length of the spring = 65-60 = 5 cm
We need to calculate the spring constant
Using formula of Hooke's law
We need to calculate the work done
On integration
Hence, The work done in stretching the spring is 0.875 J.