A certain lightning bolt moves 50.0 c of charge. how many fundamental units of charge (qe) is this?

Answers

Answer 1
Answer: The lightning bolt that moves 50.0 C of charge is converted to qe units. The conversion factor is 1 coulumb is equivalent to 6.24150975·10^18 e. Thus, converting 50 C to e is:

50.0 C * (6.24150975x10^18 e)/1C
equals 
3.120754875x10^20 e 
Answer 2
Answer:

Answer: There are 3.125\tims 10^(20) number of electrons.

Explanation:

We are given 50 Coulombs of charge and we need to find the number of electrons that can hold this much amount of charge. So, to calculate that we will use the equation:

nq_e=Q

where,

n = number of electrons

q_e Charge of one electron = 1.6* 10^(-19)C

Q = Total charge = 50 C.

Putting values in above equation, we get:

n* 1.6* 10^(-19)C=50C\n\nn=(50C)/(1.6* 10^(-19)C)\n\nn=3.125* 10^(20)C

Hence, there are 3.125\tims 10^(20) number of electrons.


Related Questions

A conducting sphere has a net charge of -4.8x10-17 C. What is the approximate number of excess electrons on the sphere?
Suppose that a solid ball, a solid disk, and a hoop all have the same mass and the same radius. Each object is set rolling without slipping up an incline with the same initial linear (translational) speed. Which object goes farthest up the incline?
On a hot summer day in the state of Washington while kayaking, I saw several swimmers jump from a railroad bridge into the Snohomish River below. The swimmers stepped off the bridge, and I estimated that they hit the water 2.00 s later. A)How high was the bridge?B)How fast were the swimmers moving when they hit the water?C)What would the swimmer's drop time be if the bridge were twice as high?
While standing outdoors one evening, you are exposed to the following four types of electromagnetic radiation: yellow light from a sodium street lamp, radio waves from an AM radio station, radio waves from an FM radio station, and microwaves from an antenna of a communications system. Rank these types of waves in terms of increasing photon energy, lowest first.
Two microwave frequencies are authorized for use in microwave ovens: 895 and 2560 mhz. calculate the wavelength of each.

A large rectangular tub is filled to a depth of 2.60 m with olive oil, which has density 915 kg/m3 . If the tub has length 5.00 m and width 3.00 m, calculate (a) the weight of the olive oil, (b) the force of air pressure on the sur- face of the oil, and (c) the pressure exerted upward by the bottom of the tub.

Answers

Answer:

weight is 3.50 x 10^5 N

force is 1.52 * 10^6 N

pressure is 1.25 * 10^5 Pa

Explanation:

given data

Given data

depth = 2.60 m

density = 915 kg/m3

length = 5.00 m

width = 3.00 m

to find out

weight of the olive oil, force of air pressure and the pressure exerted upward

solution

we know density = mass / volume

mass = density* width *length *depth

mass = (915)(3)(5)(2.60)

mass = 3.57 x 10^4 Kg

so weight = mg = 3.57 x 10^4 (9.81) = 3.50 x 10^5 N

weight is 3.50 x 10^5 N

and

we know force = pressure * area

area = 3 *5 = 15 m²

and we know atmospheric Pressure is about 1.01 * 10^5 Pa

so force = 1.01 * 10^5 (15) = 1.52 x 10^6 N

force is 1.52 * 10^6 N

and

we know Fup - Fdown = Weight

so

Fup = 1.52 *  10^6 + 3.50 *  10^5

Fup = 1.87 * 10^6 N

so pressure = Fup / area

pressure =  1.87 * 10^6  / 15

pressure is 1.25 * 10^5 Pa

The position of a particular particle as a function of is given by r=(8.5t i+5.6j-2tk )m (a) Determine the particle’s velocity and acceleration as a function of time.(b) Find the instantaneous velocity and acceleration of the particle at t=3.0 s.

Answers

Answer:

use google to find answer

Explanation:

69 69 69 69 69 69

The radius of Earth is 6370 km in the Earth reference frame. The cosmic ray is moving at 0.880Co relative to Earth.a. In the reference frame of a cosmic ray how wide does Earth seem along the flight direction?
b. In the reference frame of a cosmic ray how wide does Earth seem perpendicular to the flight direction?
Express your answer with the appropriate units.

Answers

Answer:

6052114.67492 m

12.742* 10^(6)\ m

Explanation:

v = Velocity of cosmic ray = 0.88c

c = Speed of light = 3* 10^8\ m/s

d = Width of Earth = Diameter of Earth = 12.742* 10^(6)\ m

When the cosmic ray is moving towards Earth then in the frame of the cosmic ray the width of the Earth appears smaller than the original

This happens due to length contraction

Length contraction is given by

d_e=d\sqrt{1-(v^2)/(c^2)}\n\Rightarrow d_e=12.742* 10^(6)\sqrt{1-(0.88^2c^2)/(c^2)}\n\Rightarrow d_e=6052114.67492\ m

The Earth's width is 6052114.67492 m

Contraction only occurs in the cosmic ray's frame of reference in the direction of the ray. But in perpendicular direction the width remains unchanged.

Hence, the width is12.742* 10^(6)\ m

Two point charges are placed on the x axis.The firstcharge, q1= 8.00 nC, is placed a distance 16.0 mfromthe origin along the positive x axis; the second charge,q2= 6.00 nC, is placed a distance 9.00 mfrom the originalong the negative x axis.[Give the x and y components of the electric fieldas an ordered pair. Express your answer innewtons per coulomb to three significant figures.Keep in mind that an x component that points tothe right is positive and a y component thatpoints upward is positive.]

Answers

Answer:

E = (0, 0.299) N

Explanation:

Given,

  • Charge q_1\ =\ 8.0\ nC
  • Charge q_2\ =\ 6.0\ nC
  • Distance of the first charge from the origin = (16m, 0)
  • Distance of the second charge from the origin = (-9, 0)
  • Point where the electric field required = (0, 12m)

Let \theta_1\ and\ theta_2 be the angle of the electric fields by first and second charge at the point A.

\therefore sin\theta_1\ =\ (12)/(20)\n\Rightarrow \theta_1\ =\ sin^(-1)\left ((12)/(20)\ \right )\n\Rightarrow \theta_1\ =\ 36.87^o\n\n\therefore sin\theta_1\ =\ (12)/(9)\n\Rightarrow \theta_1\ =\ sin^(-1)\left ((12)/(9)\ \right )\n\Rightarrow \theta_1\ =\ 53.13^o\n

Electric field by charge q_1 at point A,

F_1\ =\ (kq_1)/(r_1^2)\n\Rightarrow F_1\ =\ (9* 10^9* 8* 10^(-9))/(20^2)\n\Rightarrow F_1\ =\ 0.18\ N/C

Electric field by the charge q_2 at point A,

F_1\ =\ (kq_1)/(r_1^2)\n\Rightarrow F_1\ =\ (9* 10^9* 6.0* 10^(-9))/(16^2)\n\Rightarrow F_1\ =\ 0.24\ N/C

Now,

Net electric field in horizontal direction at point AF_x\ =\ F_(1x)\ +\ F_(2x)\n\Rightarrow F_x\ =\ F_1cos\theta_1\ +\ F_2cos\theta_2\n\Rightarrow F_x\ =\ 0.18*( -cos36.87^o)\ +\ 0.24* cos53.13^o\n\Rightarrow F_x\ =\ -0.144\ +\ 0.144\ N/C\n\Rightarrow F_x\ =\ 0\ N/C

Net electric field in vertical direction at point A.

F_y\ =\ F_(1y)\ +\ F_(2y)\n\Rightarrow F_y\ =\ F_1sin\theta_1\ +\ F_2sin\theta_2\n\Rightarrow F_y\ =\ 0.18* sin36.87^o\ +\ 0.24* sin53.13^o\n\Rightarrow F_y\ =\ 0.180\ +\ 0.192\n\Rightarrow F_y\ =\ 0.299\ N/C

Hence, the net electric field  at point A,

F\ =\ ( 0, 0.299 )\ N/C.

A lead ball is dropped into a lake from a diving board 6.10 mm above the water. After entering the water, it sinks to the bottom with a constant velocity equal to the velocity with which it hit the water. The ball reaches the bottom 4.50 ss after it is released. How deep is the lake?

Answers

Answer:

D=1.54489 m

Explanation:

Given data

S=6.10 mm= 0.0061 m

To find

Depth of lake

Solution

To find the depth of lake first we need to find the initial time ball takes to hit the water.To get the value of time use below equation

S=v_(1)t+(1/2)gt^(2) \n 0.0061m=(0m/s)t+(1/2)(9.8m/s^(2) )t^(2)\n t^(2)=(0.0061m)/(4.9m/s^(2) )\n  t=\sqrt{1.245*10^(-3) }\n t=0.035s

So ball takes 0.035sec to hit the water

As we have found time Now we need to find the final velocity of ball when it enters the lake.So final velocity is given as

v_(f)=v_(i)+gt\nv_(f)=0+(9.8m/s^(2) )(0.035s)\n v_(f)=0.346m/s

Since there are (4.50-0.035) seconds left for (ball) it to reach the bottom of the lake

So the depth of lake given as:

D=|vt|\nD=|0.346m/s*4.465s|\nD=1.54489m

Answer: d = 1.54m

The depth of the lake is 1.54m

Explanation:

The final velocity of the ball just before it hit the water can be derived using the equation below;

v^2 = u^2 + 2as ......1

Where ;

v is the final velocity

u is the initial velocity

a is the acceleration

s is the distance travelled.

Since the initial velocity is zero, and the acceleration is due to gravity, the equation becomes:

v^2 = 2gs

v = √2gs ......2

g = 9.8m/s^2

s = 6.10mm = 0.0061m

substituting into equation 2

v = √(2 × 9.8× 0.0061)

v = 0.346m/s

The time taken for the ball to hit water from the time of release can be given as:

d = ut + 0.5gt^2

Since u = 0

d = 0.5gt^2

Making t the subject of formula.

t = √(2d/g)

t = √( 2×0.0061/9.8)

t = 0.035s

The time taken for the ball to reach the bottom of the lake from the when it hits water is:

t2 = 4.5s - 0.035s = 4.465s

And since the ball falls for 4.465s to the bottom of the lake at the same velocity as v = 0.346m/s. The depth of the lake can be calculated as;

depth d = velocity × time = 0.346m/s × 4.465s

d = 1.54m

The depth of the lake is 1.54m

The erg is a unit of work in units of centimeters (cm), grams (g), and seconds (s), and 1 erg=1 g⋅cm^2/s^2 . Recall that the SI unit of force is the newton (N) and is equal to kg⋅m/s^2 . You push an object 0.032 m by exerting 0.010 N of force. The work is the force times the distance.How much work have you done, expressed in ergs?


A: 3,200 ergs

B: 32 ergs

C: 0.32 ergs

D: 0.00032 ergs

Answers

For the given problem, the amount of work done expressed in ergs is 3200 ergs.

Answer: Option A

Explanation:

The work done on an objects are the force acting on it to move the object to a particular distance. So, work done on the object will be directly proportional to the force acting on it and the displacement.

Here, the force acting on the object is given as 0.010 N and the displacement of the object is 0.032 m. So, the work done on the object is

          \text { Work done }=\text { Force } * \text { displacement }

          \text { Work done }=0.010 \mathrm{N} * 0.032 \mathrm{m}=0.00032 \mathrm{Nm}

It is known that 1 N=1 \mathrm{kg} \mathrm{ms}^(-2)

So, the work done can be expressed in k g m s^(-2) as,

         \text { Work done }=0.00032 \mathrm{kgm}^(2) \mathrm{s}^(-2)

It is known that 1 \mathrm{erg}=1 \mathrm{g} \mathrm{cm}^(2) / \mathrm{s}^(2), so the conversion of units from Nm to erg will be done as follows:

\text { Work done }=0.00032 \mathrm{kgm}^(2) \mathrm{s}^(-2) * \frac{1000 \mathrm{g}}{1 \mathrm{kg}} * \frac{100 * 100 \mathrm{cm}^(2)}{m^(2)}=3200 \mathrm{g} \mathrm{cm}^(2) \mathrm{s}^(-2)

Thus, work done in ergs is 3200 ergs.