Answer:
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 20 m for h then
v=√(2*9.81*20)=19.799 m/s
Rounding off, v is approximately 20 m/s
Answer:
19.8 m/s
Explanation:
During the motion of a pemdulum bob, it casually converts kinetic energy to potential energy and vice versa.
A pendulum bob reaches its maximum speed at a position closest to its equilibrium position and has its lowest when it is farthest from the equilibrium position.
The maximum speed of a pendulum bob based on the mass involved and the maximum displacement from the equilibrium position is obtained from
Maximum kinetic energy = Maximum potential energy
Maximum potential energy occurs at the farthest point from equilibrium, that is,
P.E(max) = mgh
Maximum kinetic energy = ½mv²
½mv² = mgh
v = √2gh
g = acceleration due to gravity = 9.8 m/s²
h = farthest height from equilibrium position = 20 m
v = √(2×9.8×20) = 19.8 m/s
Hope this Helps!!!
B) c + 100 km/h
C) c – 100 km/h
D) depends on the temperature, but faster than the speed if the truck was not moving.
E) faster than if the truck was not moving, but impossible to calculate with the given information
Answer:
A) c
Explanation:
Speed of light is always constant irrespective of the wave source's motion and the observer's inertial frame of reference. So, no matter how fast the car is moving the speed of light will always be constant. The speed of light in air is around 299704644.54 m/s. The meter is also defined by the speed of light as 1 meter is the distance travelled by light in 1/299792458 second.
312 Hz
292 Hz
412 Hz
Answer:
335 Hz
Explanation:
100%