A hot air balloon is moving vertically upwards at a velocity of 3m/s. A sandbag is dropped when the balloon reaches 150m. How long does the sandbag take to reach the ground and what is the maximum height it reaches?

Answers

Answer 1
Answer:
This is a perfect opportunity to stuff all that data into the general equation for the height of an object that has some initial height, and some initial velocity, when it is dropped into free fall.

                       H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

 Height at any time 'T' after the drop =

                          (initial height) +

                                              (initial velocity) x (T) +
                                                                 (1/2) x (acceleration) x (T²) .

For the balloon problem ...

-- We have both directions involved here, so we have to define them:

     Upward  = the positive direction

                       Initial height = +150 m
                       Initial velocity = + 3 m/s

     Downward = the negative direction

                     Acceleration (of gravity) = -9.8 m/s²

Height when the bag hits the ground = 0 .

                 H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
0    =  (150m) + (3m/s T) + (1/2 x -9.8 m/s² x T²)

                   -4.9 T²  +  3T  + 150  =  0

Use the quadratic equation:

                         T  =  (-1/9.8) [  -3 plus or minus √(9 + 2940)  ]

                             =  (-1/9.8) [  -3  plus or minus  54.305  ]

                             =  (-1/9.8) [ 51.305  or  -57.305 ]

                          T  =  -5.235 seconds    or    5.847 seconds .

(The first solution means that the path of the sandbag is part of
the same path that it would have had if it were launched from the
ground 5.235 seconds before it was actually dropped from balloon
while ascending.)

Concerning the maximum height ... I don't know right now any other
easy way to do that part without differentiating the big equation.
So I hope you've been introduced to a little bit of calculus.

                    H(t)  =  (H₀)  +  (v₀ T)  +  (1/2 a T²)

                  
H'(t)  =  v₀ + a T

The extremes of 'H' (height) correspond to points where h'(t) = 0 .

Set                                  v₀ + a T  =  0

                                      +3  -  9.8 T  =  0

Add 9.8 to each  side:   3               =  9.8 T

Divide each side by  9.8 :   T = 0.306 second

That's the time after the drop when the bag reaches its max altitude.

Oh gosh !  I could have found that without differentiating.

- The bag is released while moving UP at 3 m/s .

- Gravity adds 9.8 m/s of downward speed to that every second.
So the bag reaches the top of its arc, runs out of gas, and starts
falling, after
                       (3 / 9.8) = 0.306 second .

At the beginning of that time, it's moving up at 3 m/s.
At the end of that time, it's moving with zero vertical speed).
Average speed during that 0.306 second = (1/2) (3 + 0) =  1.5 m/s .

Distance climbed during that time = (average speed) x (time)

                                                           =  (1.5 m/s) x (0.306 sec)

                                                           =  0.459 meter  (hardly any at all)

     But it was already up there at 150 m when it was released.

It climbs an additional 0.459 meter, topping out at  150.459 m,
then turns and begins to plummet earthward, where it plummets
to its ultimate final 'plop' precisely  5.847 seconds after its release.  

We can only hope and pray that there's nobody standing at
Ground Zero at the instant of the plop.

I would indeed be remiss if were to neglect, in conclusion,
to express my profound gratitude for the bounty of 5 points
that I shall reap from this work.  The moldy crust and tepid
cloudy water have been delicious, and will not soon be forgotten.


Related Questions

Evidence gathered from publicly observable behavior is known as  _________ evidence.
Why is most space exploration accomplished with spacecraft that do not have astronauts on board
Is newton third law accurate for electric forces?
If the breakers at a beach are separated by 5 m and hit shore with a frequency of 0.3 Hz, at what speed are they traveling?
The Pangaea theory supports the theory of plate tectonics because _____.it is based on the idea that there were several land masses when Earth was first createdit is based on the idea that all the present continents were one supercontinentit does not require scientists to support the notion that Earth's plates can moveone day, Earth will have one large land mass again

A good baseball pitcher can throw a baseball toward home plate at 90 mi/h with a spin of 1950 rev/min. How many revolutions does the baseball make on its way to home plate? For simplicity, assume that the 60 ft path is a straight line.

Answers

The baseball will undergo 16 revolutions on its way to home plate.

Explanation:

As the parameters which are given are speed at which the baseball is thrown, (v = 90 mi/h) and the distance between the home plate and the ball thrown is 60 ft. Also the spin is said to 1950 rev/min, it indicates that the ball will undergo 1950 revolution in every single minute. So in order to determine the number of revolutions the baseball will make in its way to home plate, we have to first determine the time taken for the baseball to reach its home plate with the given speed.

As we know that speed can be obtained by the ratio of distance with time, in the present case, we know the speed and distance, then time can be obtained by ratio of distance with speed.

At first, we have to convert the speed from mi/h to ft/min

1 mi/hr = 5280/ 60 ft/min = 88 ft/min.

Then, Time = Distance/Speed = 60/(90×80)=60/7200=8.33 × 10⁻³ min

Since the ball undergoes 1950 revolutions in 1 min, then in 8.33 × 10⁻³ min, the number of revolutions will be 1950×8.33 × 10⁻³ = 16 rev

Thus, the baseball will undergo 16 revolutions on its way to home plate.

Double vision can be the result of

Answers

cross eyed can result in double vision

What happens to the mass of an object when it is cooled?

Answers

Nothing. The mass doesn't change.

A plane flies 300km in 3 hrs. What is
the rate of the plane?

Answers

the plane is on a average of 100km a hour

Answer:

on average, the plane is traveling at 100km per hour, so i think the rate is 100:1

Explanation:

Which of the following actions or events did not contribute to the Dust Bowl? Farmers in the Central U.S. had plowed grasslands to grow food crops to feed the increasing human population. They left the fields plowed and bare in the winter months when crops were not grown, and this left the soil exposed to wind. A long drought in the 1930s left the exposed soil especially dry due to the lack of precipitation. With the advent of pesticides, minerals in the ground were leached.

Answers

The following cause that is notconsidered in the formation of a Dust Bowl is the lack of farmers in Oklahoma.The answer is letter B. in fact, the number of farmers increases due to thehigh grain prices of Worl War I that encourages farmers to plow millions ofacres of natural grass to plant wheat.

Answer:

With the advent of pesticides, minerals in the ground were leached.

Explanation:

got it right on odyssey

At what distance from a long, straight wire carrying a current of 8.7 A is the magnetic field due to the wire equal to the strength of Earth’s field, approximately 5.4 × 10−5 T? The permeabilty of free space is 1.25664 × 10−6 T · m/A. Answer in units of cm.

Answers

Answer:

r= 3.2 cm

Explanation:

Given that

I= 8.7 A

B= 5.4 x 10⁻⁵ T

μo=1.25664 x 10⁻⁶

We know that magnetic filed in wire at a distance r given as

B=(\mu_oI)/(2\pi r)

r=(\mu_oI)/(2\pi B)

By putting the values

r=(1.25664* 10^(-6)* 8.7)/(2* \pi * 5.4* 10^(-5))\ m

r=0.032 m

r= 3.2 cm

Final answer:

The distance from a long straight wire at which the magnetic field equals the strength of Earth’s field, given a current of 8.7 A and Earth's field of 5.4 × 10−5 T, can be calculated using the formula for the magnetic field around a current-carrying wire. Substituting the given values, the answer is approximately 37.22 cm.

Explanation:

To solve this physics problem, we will use the formula for the magnetic field produced by a current carrying long, straight wire. The formula is: B = μI / (2πr), where 'B' is the magnetic field strength, 'μ' is the permeability of free space, 'I' is the current, and 'r' is the radial distance away from the wire.

In this case, Earth’s magnetic field, 'B', is given as 5.4 × 10−5 T, the current, 'I', is given as 8.7 A, and the permeability of free space, 'μ', is given as 1.25664 × 10−6 T · m/A. We need to find 'r', the distance away from the wire, and we want this answer in centimeters.

So, rearrange the formula to solve for 'r': r = μI / (2πB).

Substitute our known values into the equation: r = (1.25664 × 10−6 T · m/A × 8.7 A) / (2π × 5.4 × 10^-5 T). After calculating, we need to convert from meters to centimeters by multiplying by 100. The final answer is approximately 37.22 cm.

Learn more about Magnetic Field Calculation here:

brainly.com/question/30758042

#SPJ3