I just took the test and c. 446.9 J is correct
B. The field gets weaker.
C. The field changes direction.
D. The field disappears completely.
Answer: The correct answer is option (B).
Explanation:
The current carrying wire produces the magnetic field around it. More the current in the wire, stronger will be the magnetic strength around the wire. The magnetic field is stronger near this wire.
The direction of the magnetic field depends on the direction of the current.
In the given problem, Linus builds an electrical circuit with a battery and with wires that carry the current.The strength of the magnetic field depends on the amount of current flowing in the wire. As the battery weakens, the current also weakens.
Therefore, the magnetic field around the wires is weaker.
The magnetic field getting weaker is the correct answer when Linus builds an electrical circuit with a battery and with wires that carry the current. The correct answer is (B).
The strength of the magnetic field around the wires is directly proportional to the current flowing through the wires. As the battery weakens and the current decreases, the magnetic field strength around the wires also decreases.
Conversely, if the current increases, the magnetic field strength increases. This relationship is described by Ampere's law and the right-hand rule, which state that the magnetic field is directly proportional to the current.
Therefore, The correct answer is (B). The magnetic field getting weaker is the correct answer.
To know more about the magnetic field:
#SPJ6
b. False
Answer:
5.0 meters/second^2
I hope this helps!!
Explanation:
The mass of the aluminum added is calculated through the principle of conservation of energy, specifically thermal energy. By considering the heat lost by the aluminum and gained by the water, we can rearrange the equation for heat transfer and find that the mass of the aluminum is approximately 37.9 grams.
In this physics question, we're looking at a thermodynamic process involving a chunk of aluminum and water. Given the known values of their respective specific heats, the mass of water, and their final equilibrium temperature, we're aiming to find the mass of the aluminum.
We begin by understanding that in a closed system, the heat gained by one body is equal to the heat lost by another. In this case, the aluminum is losing heat, and the water is gaining it. The equation for heat transfer (Q = mcΔT), where m is mass, c is specific heat, and ΔT is change in temperature.
The heat gained by the water = mass of water * specific heat of water * change of temperature in water = 200g * 4.18J/g°C * (18.9°C - 15.5°C) = 2836.4J.
This is equal to the heat lost by the aluminum. Solving the analogous heat equation for the mass of the aluminum gives us the answer:
m = Q / (c * ΔT) = 2836.4J / (0.897J/g°C * (91.4°C - 18.9°C)) = 37.9g
So the mass of the aluminum is approximately 37.9 grams.
#SPJ12