When a hammer thrower releases her ball, she is aiming to maximize the distance from the starting ring. Assume she releases the ball at an angle of 54.6 degrees above horizontal, and the ball travels a total horizontal distance of 30.1 m. What angular velocity must she have achieved (in radians/s) at the moment of the throw, assuming the ball is 1.15 m from the axis of rotation during the spin?

Answers

Answer 1
Answer:

Answer:

The angular velocity is 15.37 rad/s

Solution:

As per the question:

\theta = 54.6^(\circ)

Horizontal distance, x = 30.1 m

Distance of the ball from the rotation axis is its radius, R = 1.15 m

Now,

To calculate the angular velocity:

Linear velocity, v = \sqrt{(gx)/(sin2\theta)}

v = \sqrt{(9.8* 30.1)/(sin2* 54.6)}

v = \sqrt{(9.8* 30.1)/(sin2* 54.6)}

v = \sqrt{(294.98)/(sin109.2^(\circ))} = 17.67\ m/s

Now,

The angular velocity can be calculated as:

v = \omega R

Thus

\omega = (v)/(R) = (17.67)/(1.15) = 15.37\ rad/s


Related Questions

A train accelerates at -1.5 m/s2 for 10 seconds. If the train had an initialspeed of 32 m/s, what is its new speed?A. 17 m/sB. 15 m/sC. 47 m/sD. 32 m/s
The aorta pumps blood away from the heart at about 40 cm/s and has a radius of about 1.0 cm. It then branches into many capillaries, each with a radius of about 5 x 10−4 cm carrying blood at a speed of 0.10 cm/s.How many capillaries are there?
1. What is the frequency of light waves with wavelength of 5 x 10-⁷ m? ​
When a box is placed on an inclined surface with no friction, it will:
Determine whether the following statements are true and give an explanation or counterexample.(A) If the acceleration of an object remains constant, its velocity is constant.(B) If the acceleration of object moving along a line is always 0, then its velocity is constant.(C) It is impossible for the instantaneous velocity at all times a(D) A moving object can have negative acceleration and increasing speed.

A mysterious object with a surface area of 0.015 m2, volume of 0.000125 m3, density of 100 kg/m3, specific heat of 100 J/(kgK), thermal conductivity of 2 W/(mK), with an unknown initial temperature was placed in a fluid with a density of 50 kg/m3, specific heat of 70 J/(kgK), thermal conductivity of 0.1 W/(mK), at a temperature of 400K. The heat transfer coefficient is given to be 10 W/(m2K). After 10 seconds, the temperature of the object is measured to be 380K. Determine the object's initial temperature.

Answers

Answer:

The object's initial temperature is 333.6 K

Explanation:

We first assume that the liquid can only transfer heat to the object through convective heat transfer method.

Let T₀ = the initial temperature of the object

T = temperature of the object at anytime.

The rate of heat transfer from the liquid to the object is given as

Q = -hA (T∞ - T)

T∞ = temperature of the fluid = 400 K

A = Surface area of the object in contact with the liquid = 0.015 m²

h = Convective heat transfer coefficient is given to be = 10 W/(m²K)

The rate of heat gained by the object is given by

mC (d/dt)(T∞ - T)

m = mass of the object = ρV

ρ = density of the object = 100 kg/m³

V = volume of the object = 0.000125 m³

m = ρV = 100 × 0.000125 = 0.0125 kg

C = specific heat capacity of the object = 100 J/(kgK)

The rate of heat loss by the liquid = rate of heat gain by the object

-hA (T∞ - T) = mC (d/dt)(T∞ - T)

(d/dt)(T∞ - T) = - (dT/dt) ( Since T∞ is a constant)

- mC (dT/dt) = -hA (T∞ - T)

(dT/dt) = (hA/mC) (T∞ - T)

Let s = (hA/mC)

(dT/dt) = -s (T - T∞)

dT/(T - T∞) = -sdt

Integrating the left hand side from T₀ (the initial temperature of the object) to T and the right hand side from 0 to t

In [(T - T∞)/(T₀ - T∞)] = -st

(T - T∞)/(T₀ - T∞) = e⁻ˢᵗ

(T - T∞) = (T₀ - T∞)e⁻ˢᵗ

s = (hA/mC) = (10 × 0.015)/(0.0125×100) = 0.12

T = 380 K at t = 10 s

T₀ = ?

T∞ = 400 K

st = 0.12 × 10 = 1.2

(380 - 400) = (T₀ - 400) e⁻¹•²

(-20/0.3012) = (T₀ - 400)

(T₀ - 400) = - 66.4

T₀ = 400 - 66.4 = 333.6 K

Hope this Helps!!!

Uranium-235 undergoes fission, forming krypton-92, barium-141, and 3neutrons. The mass of the uranium-235 is greater than the total mass of the
products. Which statement explains this difference in mass?
A. Some of the mass was transformed into neutrons during the
process.
O B. Mass was destroyed and disappeared during the process.
C. Some of the mass was transformed into gases during the
process.
D. Mass was transformed into energy during the process.

Answers

Answer:

D. Mass was transformed into energy during the process.

Answer:

C

Explanation:

Some of the mass

Consider a space shuttle which has a mass of about 1.0 x 105 kg and circles the Earth at an altitude of about 200.0 km. Calculate the force of gravity that the space shuttle experiences

Answers

Final answer:

The force of gravity that the space shuttle experiences is 9.8 x 10^5 Newtons.

Explanation:

To calculate the force of gravity that the space shuttle experiences, we can use the equation F = mg, where F represents the force of gravity, m is the mass of the object, and g is the acceleration due to gravity (approximately 9.8 m/s² on Earth). In this case, the mass of the space shuttle is given as 1.0 x 10^5 kg. However, we need to convert the altitude of the shuttle into meters, so 200.0 km becomes 200,000 meters.

Now we can calculate the force of gravity:

F = (1.0 x 10^5 kg)(9.8 m/s²)

F = 9.8 x 10^5 N

Therefore, the space shuttle experiences a force of gravity of 9.8 x 10^5 Newtons.

Learn more about force of gravity here:

brainly.com/question/12753714

#SPJ3

An earthquake on the ocean floor produced a giant wave called a tsunami. The tsunami traveled through the ocean and hit a remote island, causing a lot of damage. Is the water that hit the island the same water that was above the earthquake on the ocean floor?A No, the water from above the earthquake stayed in the same place and only the energy was transferred.
B No, the energy in the wave pushed the water particles from above the earthquake in the opposite direction.
C Yes, the water particles moved toward the island while the energy remained above the earthquake.

Answers

A lot of the biology particles can be certified by a sphychiatrist that can determine weather they are infected with Ebola

A Michelson interferometer operating at a 400 nm wavelength has a 3.95-cm-long glass cell in one arm. To begin, the air is pumped out of the cell and mirror M2 is adjusted to produce a bright spot at the center of the interference pattern. Then a valve is opened and air is slowly admitted into the cell. The index of refraction of air at 1.00 atmatm pressure is 1.00028.Required:
How many bright-dark-bright fringe shifts are observed as the cell fills with air?

Answers

Answer:

55.3

Explanation:

The computation of the number of bright-dark-bright fringe shifts observed is shown below:

\triangle m = (2d)/(\lambda) (n - 1)

where

d = 3.95 * 10^(-2)m

\lambda = 400 * 10^(-9)m

n = 1.00028

Now placing these values to the above formula

So, the  number of bright-dark-bright fringe shifts observed is

=  (2 *3.95 * 10^(-2)m)/(400 * 10^(-9)m) (1.00028 - 1)

= 55.3

We simply applied the above formula so that the number of bright dark bright fringe shifts could come

An object is being acted upon by three forces and moves with a constant velocity. One force is 60.0 N along the x-axis, the second in 75.0 N along the y-axis. What is the magnitude of the third force?

Answers

Answer:

96.05 N

Explanation:

From Vector,

The two forces acting along the x and y axis are perpendicular,

Fr = √(60²+75²) .............. Equation 1

Where Fr is the result of the two forces

Fr = √(3600+5625)

Fr = √(9225)

Fr = 96.05 N.

Note: Since the object moves with a constant velocity when it is acted upon by the three forces, The acceleration is zero and as such the resultant of the forces is equal to zero.

Therefore,

Ft = Fr+F3................... Equation 2

Where Ft = Total resistance of the three forces, F3 = magnitude of the third force.

make F3 the subject of the equation,

F3 = Ft-Fr

Given: Ft = 0 N, Fr = 96.05 N.

Substitute into equation 2

F3 = 0-96.05

F3 = -96.05 N.