Testosterone is an example of what kind of biomolecule?​

Answers

Answer 1
Answer:

Answer:

Among the four biomolecules: carbohydrates, lipids, nucleic acids, and proteins it falls on the category of protein.

Explanation:

Testosterone, also known as 17-beta-hydroxy-4-androstene-3-one, is an androgen steroid hormone. It is largely released by the testes in males and the ovaries in females, although it is also secreted in minor amounts by the adrenal glands.


Related Questions

A uniformly dense solid disk with a mass of 4 kg and a radius of 4 m is free to rotate around an axis that passes through the center of the disk and perpendicular to the plane of the disk. The rotational kinetic energy of the disk is increasing at 21 J/s. If the disk starts from rest through what angular displacement (in rad) will it have rotated after 3.3 s?
A 2.07-kg fish is attached to the lower end of an unstretched vertical spring and released. The fish drops 0.131 m before momentarily coming to rest. (a) What is the spring constant of the spring? (b) What is the period of the oscillations of the fish? ?
A boy flies a kite with the string at a 30∘ angle to the horizontal. The tension in the string is 4.5 N. Part A Part complete How much work does the string do on the boy if the boy stands still?
Unpolarized light is passed through an optical filter that is oriented in the vertical direction. 1) If the incident intensity of the light is 90 W/m2, what is the intensity of the light that emerges from the filter? (Express your answer to two significant figures.)
If I am given a total capacitence of two capacitors, their capacitence togather is 22 F. What capacitence would the individual capacitors have if they are connected in parallel or connected in series.

Which statement would most likely be found in an advertisement from a
cell phone provider

Answers

Answer:B

Explanation:

A businessperson took a small airplane for a quick flight up the coast for a lunch meeting and then returned home. The plane flew a total of 4 hours, and each way the trip was 200 miles. What was the speed of the wind that affected the plane, which was flying at a speed of 120mph? Round your answer to the nearest whole number.

Answers

Answer:

Speed of the wind is 48.989 mph

Explanation:

We have given each trip is of 200 miles

So total distance = 200 +200 = 400 miles

Speed of the airplane = 120 mph

Let the speed of the wind = x mph

So the speed of the airplane with wind = 120+x

So time taken by airplane with wind = (200)/(120+x)

Speed of the airplane against the wind = 120 - x

So time taken by the airplane against the wind =(200)/(120-x)

Total time is given as t= 4 hour

So (200)/(120+x)+(200)/(120-x)=4

(200(120-x)+200(120+x))/((120+x)(120-x))=4

48000=57600-4x^2

4x^2=9600

x = 48.989 mph

Answer:

Explanation:

  Type                           Distance             Rate         Time

Headwind 200 120-r   200/120-r

Tailwind     200  120 - r  200/120 - r

We know the times add to 4, so we write the equation:

200/120−r +   200/120 + r = 4  

We multiply both sides by the LCD and simplify to get:

(120−r)(120+r) ((200/120 -r ) + 200/120+r) = 4(120 -r) (120 +r)

200(120−r)+200(120+r)=4(120−r)(120+r)

Factor the 200 and simplify inside the parentheses to find:

200(120−r+120+r)=4(1202−r2)

200(240)=4(1202−r2)

200(60)=120^2−r^2

12,000=14,400−r^2

−2,400= −r^2

49 ≈ r

The speed of the wind is 49mph.

What is the meaning of relative as a noun?

Answers

Answer:

noun. a person who is connected with another or others by blood or marriage. something having, or standing in, some relation or connection to something else. something dependent upon external conditions for its specific nature, size, etc. (opposed to absolute).

An electron traveling horizontally to the right enters a region where a uniform electric field is directed downward. What is the direction of the electric force exerted on the electron once it has entered the electric field?

Answers

Answer:

Upward

Explanation:

For charged particles immersed in an electric field:

- if the particle is positively charged, the direction of the force is the same as the direction of the electric field

- if the particle is negatively charged, the direction of the force is opposite to the direction of the electric field

In this problem, we have an electron - so a negatively charged particle - so the direction of the force is opposite to that of the electric field.

Since the electric field is directed downward, therefore, the electric force on the electron will be upward.

A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and  the reflected wave and the transmitted wave.

Answers

Answer:

Explanation:

A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and  the reflected JJJJJJave and the transmitted wave.

In a charging process, 4 × 1013 electrons are removed from one small metal sphere and placed on a second identical sphere. Initially, both metal spheres were neutral. After the charging process, the electrical potential energy associated with the two spheres is found to be −0.063 J. What is the distance between the two spheres?

Answers

Answer:

The distance between the two spheres is 914.41 X 10³ m

Explanation:

Given;

4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;

1 e = 1.602 X 10⁻¹⁹ C

4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C

V = Ed

where;

V is the electrical potential energy between two spheres, J

E is the electric field potential between the two spheres N/C

d is the distance between two charged bodies, m

V = (K*q)/(d^2)*d = (K*q)/(d)

d = (K*q)/(V)

where;

K is coulomb's constant = 8.99 X 10⁹ Nm²/C²

d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063

d = 914.41 X 10³ m

Therefore, the distance between the two spheres is 914.41 X 10³ m