Answer:
1.26812 N
Explanation:
= Mass of toy =
= Length of string =
= Period of rotation =
Time period is given by
The rotational velocity is 1.3792 m/s
The tension in the rope will be the centripetal force acting on the toy
The tension in the string is 1.26812 N.
1 pound
1 kilometer
1 gram
Answer:
it's answer is 1 newton
Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:
n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:
hence, the frequency of the third overtone is 102 Hz
Answer:
Explanation:
a)
d = separation of the slits = 0.30 mm = 0.30 x 10⁻³ m
λ = wavelength of the light = 496 nm = 496 x 10⁻⁹ m
n = order of the bright fringe
D = screen distance = 130 cm = 1.30 m
= Position of nth bright fringe
Position of nth bright fringe is given as
For n = 1
For n = 2
For n = 3
b)
Position of nth dark fringe is given as
For n = 1
For n = 2
For n = 3
The speed of the spacecraft at its outer edge is 26.93 m/s.
The given parameters;
The speed of the spacecraft at its outer edge is calculated as follows;
Thus, the speed of the spacecraft at its outer edge is 26.93 m/s.
Learn more here:brainly.com/question/20905151
Answer:
Explanation:
Given
diameter of spacecraft
radius
Force of gravity =mg
where m =mass of object
g=acceleration due to gravity on earth
Suppose v is the speed at which spacecraft is rotating so a net centripetal acceleration is acting on spacecraft which is given by
1/4 of inductance of solenoid B
same as inductance of solenoid B
1/8 of inductance of solenoid B
four times of inductance of solenoid B
Answer:
∴Inductance of solenoid A is of inductance of solenoid B.
Explanation:
Inductance of a solenoid is
N= number of turns
= length of the solenoid
d= diameter of the solenoid
A=cross section area
B=magnetic induction
= magnetic flux
= Current
Given that, Solenoid A has total number of turns N, length L and diameter D
The inductance of solenoid A is
Solenoid B has total number of turns 2N, length 2L and diameter 2D
The inductance of solenoid B is
Therefore,
∴Inductance of solenoid A is of inductance of solenoid B.
Hi there!
We can begin by calculating the inductance of a solenoid.
Recall:
L = Inductance (H)
φ = Magnetic Flux (Wb)
i = Current (A)
We can solve for the inductance of a solenoid. We know that its magnetic field is equivalent to:
And that the magnetic flux is equivalent to:
Thus, the magnetic flux is equivalent to:
The area for the solenoid is the # of loops multiplied by the cross-section area, so:
Using this equation, we can find how it would change if the given parameters are altered:
**The area will quadruple since a circle's area is 2-D, and you are doubling its diameter.
Thus, Solenoid B is 8 times as large as Solenoid A.
Solenoid A is 1/8 of the inductance of solenoid B.