Answer:
ok
Explanation:
B) is 0.21 km/s.
C) is 65 m/s.
D) is 9.3 m/s.
E) None of these is correct
Answer:
Explanation:
Using the law of conservation of momentum to solve the problem. According to the law, the sum of momentum of the bodies before collision is equal to the sum of the bodies after collision. The bodies move with the same velocity after collision.
Mathematically.
mu + MU = (m+M)v
m and M are the masses of the bullet and the block respectively
u and U are their respective velocities
v is their common velocity
from the question, the following parameters are given;
m = 20g = 0.02kg
u = 960m/s
M = 4.5kg
U =0m/s (block is at rest)
Substituting this values into the formula above to get v;
0.02(960)+4.5(0) = (0.02+4.5)v
19.2+0 = 4.52v
4.52v = 19.2
Dividing both sides by 4.52
4.52v/4.52 = 19.2/4.52
v = 4.25m/s
Since they have the same velocity after collision, then the speed of the block immediately after the collision is also 4.25m/s
Answer: hello your question is incomplete below is the complete question
Water stands at a depth H in a large open tank whose side walls are vertical . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole
answer :
At Height ( h ) from the bottom of Tank
Explanation:
Determine how far above the bottom of the tank a second hole be cut
For the second hole to have the same range as the first hole
Range of first hole = Velocity of efflux of water * time of fall of water
= √ (2gh) * √( 2g (H - h) / g)
= √ ( 4(H-h) h)
Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank
The second hole should be cut at the same height as the first hole to have the same range for the stream.
In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.
#SPJ3
What scientific practice is Rhonda performing
Answer:he conducts the investigation to see the effect acidic water has on limestone
Explanation:
Energy decreases with decreasing wavelength and decreasing frequency.
B.
Energy increases with decreasing wavelength and increasing frequency.
C.
Energy increases with decreasing wavelength and decreasing frequency.
D.
Energy decreases with increasing wavelength and increasing frequency.
Answer:
B. Energy increases with decreasing wavelength and increasing frequency.
Explanation:
think the sound frequencies that dogs can
hear compare to the frequencies that humans
can hear?
Dogs can hear sounds at higher frequencies than humans. The range of sound frequencies that dogs can hear is approximately 40 Hz to 60,000 Hz, while the range for humans is 20 Hz to 20,000 Hz. This means that dogs can hear ultrasonic sounds that are beyond the range of human hearing.
In terms of physics, sound is a vibration that travels through a transmission medium like a gas, liquid, or solid as an acoustic wave.
Sound is the reception of these waves and the brain's perception of them in terms of human physiology and psychology. Dogs have the ability to hear ultrasonic sounds that are audible only to them.
Learn more about sound on:
#SPJ1