Answer:
Torques must balance
F1 * X1 = F2 * Y2
or M1 g X1 = M2 g X2
X2 = M1 / M2 * X1 = 130.4 / 62.3 * 10.7
X2 = 22.4 cm
Torque = F1 * X2 =
62.3 gm* 980 cm/sec^2 * 22.4 cm = 137,000 gm cm^2 / sec^2
Normally x cross y will be out of the page
r X F for F1 will be into the page so the torque must be negative
Answer:
Work = 1167.54 J
Explanation:
The amount of non-conservative work here can be given by the difference in kinetic energy and the potential energy. From Law of conservation of energy, we can write that:
Gain in K.E = Loss in P.E + Work
(0.5)(m)(Vf² - Vi²) - mgh = Work
where,
m = mass of boy = 60 kg
Vf = Final Speed = 8.5 m/s
Vi = Initial Speed = 1.6 m/s
g = 9.8 m/s²
h = height drop = 1.57 m
Therefore,
(0.5)(60 kg)[(8.5 m/s)² - (1.6 m/s)²] - (60 kg)(9.8 m/s²)(1.57 m) = Work
Work = 2090.7 J - 923.16 J
Work = 1167.54 J
Answer:
it A
Explanation:
Its a negative ion that hss one less valence electron than a netural bromine atom
Answer:
The flux through the surface of the cube is
Solution:
As per the question:
Edge of the cube, a = 8.0 cm =
Volume Charge density,
Now,
To calculate the electric flux:
(1)
where
= electric flux
= permittivity of free space
Volume Charge density for the given case is given by the formula:
(2)
Volume of cube,
Thus
Thus from eqn (2), the total charge is given by:
Now, substitute the value of 'q' in eqn (1):
Answer: 132.02 J
Explanation:
By definition, the kinetic energy is written as follows:
KE = 1/2 m v²
In our question, we know from the question, the following information:
m = 0.1434 Kg
v= 42.91 m/s
Replacing in the equation for KE, we have:
KE = 1/2 . 0.1434 Kg. (42.91)² m²/s² ⇒ KE = 132.02 N. m = 132.02 J
Given :
A 5-kg moving at 6 m/s collided with a 1-kg ball at rest.
The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec.
To Find :
The velocity of the first ball after the collision.
Solution :
We know, by conservation of momentum :
Putting all given values with directions ( one side +ve and other side -ve ).
Therefore, the velocity of first ball after the collision is 4 m/s after in opposite direction.
Hence, this is the required solution.
Answer:
P = 1.99 10⁸ Pa
Explanation:
The definition of the bulk module is
B = - P / (ΔV / V)
The negative sign is included for which balk module is positive, P is the pressure and V that volume
They tell us that the variation in volume is 9.05%, that is
ΔV / V = 9.0Δ5 / 100 = 0.0905
P = - B DV / V
P = 2.2 10⁹ (0.0905)
P = 1.99 10⁸ Pa