1) 621.8 Hz
2) 719.3 Hz
3) 700 Hz
Explanation:
1)
The Doppler effect occurs when there is a source of a wave in relative motion with respect to an observer.
When this happens, the frequency of the wave appears shifted to the observer, according to the equation:
where
f is the real frequency of the sound
f' is the apparent frequency of the sound
v is the speed of the sound wave
is the velocity of the observer, which is negative if the observer is moving away from the source, positive if the observer is moving towards the source
is the velocity of the source, which is negative if the source is moving towards the observer, positive if the source is moving away
In this problem we have:
f = 700 Hz is the frequency of the siren
v = 343 m/s is the speed of sound
is the velocity of the car with the siren
is the velocity of the felon (he's moving away from the siren)
So, the frequency heard by the felon is
2)
In this case, the cop does a U-turn and speeds towards the felon at 30 m/s.
This means that now the siren is moving towards the observer (so, becomes positive), while the sign of still remains positive.
So we have:
f = 700 Hz is the frequency of the siren
v = 343 m/s is the speed of sound
is the velocity of the car with the siren
is the velocity of the felon
So, the frequency heard by the felon is
3)
In this case, the felon speeds up to 30 m/s.
This means that now the felon and the siren are moving with the same relative velocity: so, it's like they are not moving relative to each other, so the frequency will not change.
In fact we have:
f = 700 Hz is the frequency of the siren
v = 343 m/s is the speed of sound
is the velocity of the car with the siren
is the velocity of the felon
So, the frequency heard by the felon is
So, the frequency will not change.
b. The tubing was unable to supply any more water to the tube for use.
c. The pressure outside the tube is higher that the water pressure inside the tube.
Answer:
a. The pressure in the tubing is equal to the barometric pressure.
Explanation:
Since in the question it is mentioned that the if you take the stoppert part of the tube than the level of warer would be fall approx 4th floor and if it is continued than it wont be continue but remains constant.
Now here first we do that the tube i.e. connected to the bucket should be taken up. In the first instance, the bucket supplies the water to the tube but it would not increased far away to the level of the barometric pressure
Hence, the correct option is a.
According to the question,
Let,
Now,
→
By substituting the values, we get
The final velocity will be:
→
Now,
→
hence,
The distance will be:
→
Thus the above approach is right.
Learn more about friction here:
Answer:
The block slides on the horizontal surface 25 m before coming to rest.
Explanation:
Hi there!
For this problem, we have to use the energy-conservation theorem. Initially, the block has only gravitational potential energy (PE) that can be calculated as follows:
PE = m · g · h
Where:
m = mass of the block.
g = acceleration due to gravity.
h = height at which the block is located.
As the block starts to slide down the track, its height diminishes as well as its potential energy. Due to the conservation of energy, energy can´t disappear, so the loss of potential energy is compensated by an increase of kinetic energy (KE). In other words, as the block slides, the potential energy is converted into kinetic energy. The equation of kinetic energy is the following:
KE = 1/2 · m · v²
Where:
m = mass of the block.
v = speed of the block.
Then, at the bottom of the ramp, the kinetic energy of the block will be equal to the potential energy that the block had at the top of the ramp.
Initial PE = KE at the bottom
When the block starts sliding horizontally, friction force does work to stop the block. According to the energy-work theorem, the change in the kinetic energy of an object is equal to the net work done on that object. In other words, the amount of work needed to stop the block is equal to its kinetic energy. Then, the work done by friction will be equal to the kinetic energy of the block at the bottom, that is equal to the potential energy of the block at the top of the track:
initial PE = KE at the bottom = work done by friction
The work done by friction is calculated as follows:
W = Fr · Δx
Where:
W = work
Fr = friction force.
Δx = traveled distance.
And the friction force is calculated as follows:
Fr = μ · N
Where:
μ = coefficient of friction.
N = normal force.
Since the block is not accelerated in the vertical direction, in this case, the normal force is equal to the weight (w) of the block:
Sum of vertical forces = ∑Fy = N - w = 0 ⇒N = w
And the weight is calculated as follows:
w = m · g
Where m is the mass of the block and g the acceleration due to gravity.
Then, the work done by friction can be expressed as follows:
W = μ · m · g · Δx
Using the equation:
intial PE = work done by friction
m · g · h = μ · m · g · Δx
Solving for Δx
h/μ = Δx
5.0 m / 0.20 = Δx
Δx = 25 m
The block slides on the horizontal surface 25 m before coming to rest.
Answer:
The answer is: Pressure increases linearly with the depth
Explanation:
In this case, the definition of pressure is:
where F = mg is the weight of the fluid over the body, and A is the area of the surface to which the force is exerted. If we consider , then
.
Volume can be expressed as V = A*h, where A is the cross section of the column of the fluid over the body and h is the height of the column, in other words, the depth.
So
,
which means that pressure increases linearly with the depth in a factor of .
b.) the buoyant force in the water is larger than that in mercury
c.) the buoyant force in the water is zero and that in mercury is non - zero
d.) the buoyant force in the water is equal to that in mercury
e.) no conclusion can be made about the respective values of the buoyant forces
Answer: a)
Explanation:
The buoyant force, as stated by Archimedes’ principle, is equal to the weight of the liquid that occupies the same volumen as the submerged object, as follows:
Fb = δ.V.g
If this force is larger than the weight of the object (that means that the fluid is denser than the solid), the object floats, which is the case for silver and mercury.
Instead, silver density is larger than water density, which explains why the pure silver ingot sinks.
Finally, as mercury is denser than water, we conclude that for a same object, the buoyant force in mercury is larger than in water (exactly 13.6 times greater).
B. 60 cm
C. 75 cm
D. 90 cm
Answer:
The DE will be
Explanation:
We have to find differential equation under the influence of gravity and experiencing a resistive force
Let an object of mass m falling under the influence of gravity
So the force experience under gravity
Le the a resistive force of magnitude kv opposes this gravity force, here k is constant and v is velocity.
So net force -----eqn 1
So
We know that velocity is rate of change of position so , and acceleration is rate of change of velocity so
Putting all these value in eqn 1