Answer:
T1 = 499.9N, T2 = 865.8N, T3 = 1000N
Explanation:
To find the tensions we need to find the vertical and horizontal components of T1 and T2
T1x = T1 cos60⁰, T1y = T1 sin60⁰
Also, T2x = T2 cos30⁰, T2y = T2 sin30⁰
For the forces to be in equilibrium,
the sum of vertical forces must be zero and the sum of horizontal forces must also be zero
Sum of Fx = 0
That is, T1x - T2x=0
NB: T2x is being subtracted because T1x and T2x are in opposite directions
T1 cos60⁰ - T2 cos30⁰ = 0
0.866T1 - 0.5T2 = 0 ............ (1)
Sum of Fy = 0
T1y + T2y - 1000 = 0
T1 sin60⁰ + T2 sin30⁰ - 1000 = 0
NB: The weight of the bag of cement is also being subtracted because it's in an opposite direction.
0.5T1 - 0.866T2 - 1000 = 0 ........(2)
From (1)
make T1 the subject
T1 = 0.5T2/0.866
Substitute T1 into (2)
0.5 (0.5T2/0.866) - 0.866T2 = 1000
(0.25/0.866)T2 - 0.866T2 = 1000
0.289T2 - 0.866T2 = 1000
1.155T2 = 1000
T2 = 865.8N
Then T1 = 0.5 x 865.8 / 0.866
T1 = 499.9N
T3 = 1000N
NB: The weight of the bag is the Tension above the rope, which is T3
Answer:
2.70
Explanation:
pH = -log[H+]
pH = -log[2.0x10^-3]
pH = 2.70
Answer:
D. 39 N m
Explanation:
m = mass of the weight used in crossfit workout = 7.0 kg
Force due to the weight used is given as
F = mg
F = (7.0) (9.8)
F = 68.6 N
d = distance of point of action of weight from shoulder joint = 0.57 m
τ = Torque about the shoulder joint due to the weight
Torque about the shoulder joint due to the weight is given as
τ = F d
Inserting the values
τ = (68.6) (0.57)
τ = 39 Nm
Answer:
4.875 V
Explanation:
N = 1300
diameter = 2.10 cm
radius = half of diameter = 1.05 cm
B1 = 0.130 T
B2 = 0 T
t = 12 ms
According to the law of electromagnetic induction,
Where, Ф be the magnetic flux linked with the coil
e = 4.875 V
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m
Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.
The angular acceleration of the disk drive in an old computer game system while speeding up is 1256 rad/s². This is calculated using kinematics in rotational motion, given the information on rotations, revolution time, and start from rest.
To calculate the angular acceleration of a disk drive in an old computer game system, we must use the concept of kinematics in rotation. When it is stated that it takes two revolutions to reach full speed, this implies that the total angular displacement is 4π radians (since one full revolution is 2π radians).
Given that the disk drive revolves once every 0.050 seconds, the final angular speed (ω) can be computed as 2π rad/0.050 s = 125.6 rad/s. Since the disk starts from rest, the initial angular speed (ω0) is 0. As a result, the total time taken (t) to reach full speed is 2*0.050s = 0.1 s.
We can then use the equation of motion in rotational form, α = (ω - ω0)/t, to calculate the angular acceleration. Hence the angular acceleration (α) is (125.6 rad/s - 0 rad/s) / 0.1 s = 1256 rad/s². Therefore, the angular acceleration of the disk drive is 1256 rad/s² while it is speeding up.
#SPJ12
The angular acceleration of the disk drive while it is speeding up is 8π rad/s².
The angular acceleration of the disk drive while it is speeding up can be determined by using the formula: angular acceleration = (final angular velocity - initial angular velocity) / time taken. In this case, the initial angular velocity is 0 (since the disk starts from rest) and the final angular velocity is 2 revolutions per 0.050 seconds. To convert revolutions to radians, multiply by 2π. The time taken is the time for two revolutions, so it is 2 * 0.050 seconds. Plugging in these values in the formula, we get:
Angular acceleration = (2 * 2π rad/s - 0) / (2 * 0.050 s) = 8π rad/s²
#SPJ2
Answer:
the answer is it is going north
Explanation:
because its the opposite
The magnetic force on a wire carrying current towards the south under a magnetic field directed vertically upwards will point towards the East. In order to determine this, use the right-hand rule.
The direction of the magnetic force on a current-carrying wire under a magnetic field can be deduced using the right-hand rule. In this case, with the current flowing towards the south and the magnetic field directed vertically upward, you would point your right thumb in the direction of the current (southwards) and curl your fingers in the direction of the magnetic field (upwards). The palm of your hand will then face toward the direction of the force. In this case, the force would be pointing toward the East.
The right-hand rule is a vital principle in the study of electromagnetism as it aids in identifying the direction of various quantities in magnetic fields. The magnetic force on a current-carrying wire represents the phenomenon underlying the working of many electric motors.
#SPJ5