Answer:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Explanation:
Let assume the existence of a line of current between the water tank and the ground and, hence, the absence of heat and work interactions throughout the system. If water is approximately at rest at water tank and at atmospheric pressure (), then speed of efflux of the non-viscous water is modelled after the Bernoulli's Principle:
Where:
, - Water total pressures inside the tank and at ground level, measured in pascals.
- Water density, measured in kilograms per cubic meter.
- Gravitational acceleration, measured in meters per square second.
, - Water speeds inside the tank and at the ground level, measured in meters per second.
, - Heights of the tank and ground level, measured in meters.
Given that , , , , and , the expression is reduced to this:
And final speed is now calculated after clearing it:
The speed of efflux of non-viscous water through the opening will be approximately 6.263 meters per second.
Answer:
the googles are 5.3 m from the edge
Explanation:
Given that
depth of pool , d = 3.2 m
Now, let i be the angle of incidence
a laser pointer 0.90 m above the edge of the pool and laser beam enters the water 2.2 m from the edge
⇒tan i = 2.2/0.9
solving we get
i = 67.8°
Using snell's law ,
n1 ×sin(i) = n2 ×sin(r)
n1= refractive index of 1st medium= 1
n2= refractive index of 2nd medium = 1.33
r= angle of reflection
therefore,
r = 44.1°
Now,
distance of googles = 2.2 + d×tan(r)
distance of googles = 2.2 + 3.2×tan(44.1)
distance of googles = 5.3 m
the googles are 5.3 m from the edge
Answer:
Point motion will eventually stops due to action of g exactly perpendicular...
Explanation:
If ignoring the air resistance, the magnitude of gravitational acceleration is already strong enough to stops the acceleration. As we know that, the spring constant of a bungee spring cord will be F = -k/x, where x is the stretched length and k is the spring constant of bungee cord. If F = ma = w = mg, the g = -m k/x. Now we can clearly see that the value of g remains constant due to the fluctuating length of the cord as the motion progresses back and forth in SHM say from x1 to x2 and x2 to x1.
Answer:
Please find the answer in the explanation
Explanation:
Responsibilities of citizens are those things citizens are to take care of.
While obligations are those things that are compulsory for the citizens to observe and adhere to.
Why are certain things obligations of citizenship instead of responsibilities?
1.) Because of law and order of the community. It is mandatory for all citizens to obey the law of the land.
2.) Because of the progress and peaceful coexistence of the citizens in the community.
3.) Because of the protection of constitution of the land
4.) To support and defend the constitution
5.) To maintain orderliness and eschew violence.
Answer:
51 mph
Explanation:
Answer:
4.4×10⁻⁷ Coulomb
Explanation:
V = Voltage = 5.8 kV
d = Potential distance = 2.8 mm = 0.0028 m
A = Area = 0.3×0.08 = 0.024 m²
ε₀ = permittivity constant in a Vacuum= 8.85×10⁻¹² F/m
Magnitude of charge transferred between a carpet and a shoe is 4.4×10⁻⁷ Coulomb.
Answer:
The horizontal distance is 4.823 m
Solution:
As per the question:
Mass of man, m = 65.0 kg
Height of the hill, H = 5.00 m
Mass of the backpack, m' = 20.0 kg
Height of ledge, h = 2 m
Now,
To calculate the horizontal distance from the edge of the ledge:
Making use of the principle of conservation of energy both at the top and bottom of the hill (frictionless), the total mechanical energy will remain conserved.
Now,
where
KE = Kinetic energy
PE = Potential energy
Initially, the man starts, form rest thus the velocity at start will be zero and hence the initial Kinetic energy will also be zero.
Also, the initial potential energy will be converted into the kinetic energy thus the final potential energy will be zero.
Therefore,
where
v = velocity at the hill's bottom
Now,
Making use of the principle of conservation of momentum in order to calculate the velocity after the inclusion, v' of the backpack:
Now, time taken for the fall:
Now, the horizontal distance is given by:
x = v't =
Answer
given,
mass of the man = 65 kg
height = 5 m
mass of the back pack = 20 kg
skis off to 2.00 m high ledge
horizontal distance =
speed of the person before they grab back pack is equal to potential and kinetic energy
v = 9.89 m/s
now he perform elastic collision
v = 7.57 m/s
time taken by the skies to fall is
t = 0.6388 s
distance
d = v x t
d = 7.57 x 0.6388
d = 4.84 m