Answer: hello your question is incomplete below is the complete question
Water stands at a depth H in a large open tank whose side walls are vertical . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole
answer :
At Height ( h ) from the bottom of Tank
Explanation:
Determine how far above the bottom of the tank a second hole be cut
For the second hole to have the same range as the first hole
Range of first hole = Velocity of efflux of water * time of fall of water
= โ (2gh) * โ( 2g (H - h) / g)
= โ ( 4(H-h) h)
Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank
The second hole should be cut at the same height as the first hole to have the same range for the stream.
In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.
#SPJ3
Answer:
change in entropy is 1.44 kJ/ K
Explanation:
from steam tables
At 150 kPa
specific volume
Vf = 0.001053 m^3/kg
vg = 1.1594 m^3/kg
specific entropy values are
Sf = 1.4337 kJ/kg K
Sfg = 5.789 kJ/kg
initial specific volume is calculated as
FROM STEAM Table
at 200 kPa
specific volume
Vf = 0.001061 m^3/kg
vg = 0.88578 m^3/kg
specific entropy values are
Sf = 1.5302 kJ/kg K
Sfg = 5.5698 kJ/kg
constant volume so
Change in entropy
=3( 3.36035 - 2.88) = 1.44 kJ/kg
Answer:
E = (0, 0.299) N
Explanation:
Given,
Let be the angle of the electric fields by first and second charge at the point A.
Electric field by charge at point A,
Electric field by the charge at point A,
Now,
Net electric field in horizontal direction at point A
Net electric field in vertical direction at point A.
Hence, the net electric field at point A,
Select the correct answer
You travel in a circle, whose circumference is 8 kilometers, at an average speed of 8 kilometers/hour. If you stop at the same point you started
from, what is your average velocity?
A
0 kilometers/hour
B.
2 kilometers/hour
4 kilometers/hour
D
8 kilometers/hour
E.
16 kilometers/hour
Rese
Velocity depends on the straight-line distance between your start-point and your end-point, regardless of what route you follow to get there.
If you stop at the same point where you started, then that distance is zero, no matter how far you drove before you returned to your start-point.
So the average velocity around any "CLOSED" path is zero. (A)
Answer:
liquids
Explanation
Answer:
V(peak voltage) is the highest voltage that the waveform will ever attain and the Vrms(root-mean-square) is the effective voltage of the total waveform representing the AC source.