How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole

Answers

Answer 1
Answer:

Answer: hello your question is incomplete below is the complete question

Water stands at a depth H in a large open tank whose side walls are vertical  . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole

answer :

At Height ( h ) from the bottom of Tank

Explanation:

Determine how far above the bottom of the tank a second hole be cut

For the second hole to have the same range as the first hole

Range of first hole = Velocity of efflux of water * time of fall of water

                               =  โˆš (2gh) * โˆš( 2g (H - h) / g)

                               = โˆš ( 4(H-h) h)

Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank

Answer 2
Answer:

Final answer:

The second hole should be cut at the same height as the first hole to have the same range for the stream.

Explanation:

In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.

Learn more about Range of stream from a hole here:

brainly.com/question/24130937

#SPJ3


Related Questions

Which of the following organisms has an adaptation that will allow it to survive in tundra biome? *A.)Plants with roots that are short and grows sideways with hairy stems and small leaves.B.)Plants that have broad leaves to capture sunlight and long roots to penetrate the soil.C.)Animals with thin fur that allows them to get rid of heat efficiently.D.)Animals with long tongues for capturing prey and sticky pads for climbing trees.
Question Part Points Submissions Used A car is stopped for a traffic signal. When the light turns green, the car accelerates, increasing its speed from 0 to 5.30 m/s in 0.812 s. (a) What is the magnitude of the linear impulse experienced by a 62.0-kg passenger in the car during the time the car accelerates? kg ยท m/s (b) What is the magnitude of the average total force experienced by a 62.0-kg passenger in the car during the time the car accelerates? N
A mysterious object with a surface area of 0.015 m2, volume of 0.000125 m3, density of 100 kg/m3, specific heat of 100 J/(kgK), thermal conductivity of 2 W/(mK), with an unknown initial temperature was placed in a fluid with a density of 50 kg/m3, specific heat of 70 J/(kgK), thermal conductivity of 0.1 W/(mK), at a temperature of 400K. The heat transfer coefficient is given to be 10 W/(m2K). After 10 seconds, the temperature of the object is measured to be 380K. Determine the object's initial temperature.
A child is sitting on the outer edge of a merry-go-round that is 18 m in diameter. if the merry-go-round makes 5.9 rev/min, what is the velocity of the child in m/s?
The 160-lblb crate is supported by cables ABAB, ACAC, and ADAD. Determine the tension in these wire

If a barometer reads 772 mm hg, what is the atmospheric pressure expressed in pounds per square inch?

Answers

15.23.....................
I think it would be 15.23 not so sure but
hope this helps! (:

An insulated rigid tank contains 3 kg of H2O in the form of a saturated mixture of liquid and vapor at a pressure of 150 kPa and a quality of 0.25. An electric heater inside the tank is turned on to heat this H2O until the pressure increases to 200 kPa. Please determine the change in total entropy of water during this process. Hint: See if you can find the electrical work consumed during this process.

Answers

Answer:

change in entropy is 1.44 kJ/ K

Explanation:

from steam tables

At 150 kPa

specific volume

Vf = 0.001053 m^3/kg

vg = 1.1594 m^3/kg

specific entropy values are

Sf = 1.4337 kJ/kg K

Sfg = 5.789 kJ/kg

initial specific volume is calculated as

v_1 = vf + x(vg - vf)

      = 0.001053 + 0.25(1.1594 - 0.001053)

v_1 = 0.20964  m^3/kg

s_1 = Sf + x(Sfg)

     = 1.4337 + 0.25 * 5.7894 = 2.88 kJ/kg K

FROM STEAM Table

at 200 kPa

specific volume

Vf = 0.001061 m^3/kg

vg = 0.88578 m^3/kg

specific entropy values are

Sf = 1.5302 kJ/kg K

Sfg = 5.5698 kJ/kg

constant volume  sov_1 -  v_2  = 0.29064 m^3/kg

v_2 = v_1 = vf + x(vg - vf)

       =0.29064 = x_2(0.88578 - 0.001061)

x_2 = 0.327

s_2 = 1.5302 + 0.32 * 5.5968 = 3.36035 kJ/kg K

Change in entropy \Delta s = m(s_2 - s_1)

              =3( 3.36035 - 2.88) =  1.44 kJ/kg

Two point charges are placed on the x axis.The firstcharge, q1= 8.00 nC, is placed a distance 16.0 mfromthe origin along the positive x axis; the second charge,q2= 6.00 nC, is placed a distance 9.00 mfrom the originalong the negative x axis.[Give the x and y components of the electric fieldas an ordered pair. Express your answer innewtons per coulomb to three significant figures.Keep in mind that an x component that points tothe right is positive and a y component thatpoints upward is positive.]

Answers

Answer:

E = (0, 0.299) N

Explanation:

Given,

  • Charge q_1\ =\ 8.0\ nC
  • Charge q_2\ =\ 6.0\ nC
  • Distance of the first charge from the origin = (16m, 0)
  • Distance of the second charge from the origin = (-9, 0)
  • Point where the electric field required = (0, 12m)

Let \theta_1\ and\ theta_2 be the angle of the electric fields by first and second charge at the point A.

\therefore sin\theta_1\ =\ (12)/(20)\n\Rightarrow \theta_1\ =\ sin^(-1)\left ((12)/(20)\ \right )\n\Rightarrow \theta_1\ =\ 36.87^o\n\n\therefore sin\theta_1\ =\ (12)/(9)\n\Rightarrow \theta_1\ =\ sin^(-1)\left ((12)/(9)\ \right )\n\Rightarrow \theta_1\ =\ 53.13^o\n

Electric field by charge q_1 at point A,

F_1\ =\ (kq_1)/(r_1^2)\n\Rightarrow F_1\ =\ (9* 10^9* 8* 10^(-9))/(20^2)\n\Rightarrow F_1\ =\ 0.18\ N/C

Electric field by the charge q_2 at point A,

F_1\ =\ (kq_1)/(r_1^2)\n\Rightarrow F_1\ =\ (9* 10^9* 6.0* 10^(-9))/(16^2)\n\Rightarrow F_1\ =\ 0.24\ N/C

Now,

Net electric field in horizontal direction at point AF_x\ =\ F_(1x)\ +\ F_(2x)\n\Rightarrow F_x\ =\ F_1cos\theta_1\ +\ F_2cos\theta_2\n\Rightarrow F_x\ =\ 0.18*( -cos36.87^o)\ +\ 0.24* cos53.13^o\n\Rightarrow F_x\ =\ -0.144\ +\ 0.144\ N/C\n\Rightarrow F_x\ =\ 0\ N/C

Net electric field in vertical direction at point A.

F_y\ =\ F_(1y)\ +\ F_(2y)\n\Rightarrow F_y\ =\ F_1sin\theta_1\ +\ F_2sin\theta_2\n\Rightarrow F_y\ =\ 0.18* sin36.87^o\ +\ 0.24* sin53.13^o\n\Rightarrow F_y\ =\ 0.180\ +\ 0.192\n\Rightarrow F_y\ =\ 0.299\ N/C

Hence, the net electric field  at point A,

F\ =\ ( 0, 0.299 )\ N/C.

Feest. Fysics and motion11
Select the correct answer
You travel in a circle, whose circumference is 8 kilometers, at an average speed of 8 kilometers/hour. If you stop at the same point you started
from, what is your average velocity?
A
0 kilometers/hour
B.
2 kilometers/hour
4 kilometers/hour
D
8 kilometers/hour
E.
16 kilometers/hour
Rese

Answers

Velocity depends on the straight-line distance between your start-point and your end-point, regardless of what route you follow to get there.

If you stop at the same point where you started, then that distance is zero, no matter how far you drove before you returned to your start-point.

So the average velocity around any "CLOSED" path is zero. (A)

Which state of matter is most similar to solids

Answers

Answer:

liquids

Explanation

What is the difference between V(peak voltage) and Vrms (root-mean-square) of AC voltage source?

Answers

Answer:

V(peak voltage) is the highest voltage that the waveform will ever attain and the Vrms(root-mean-square) is the effective voltage of the total waveform representing the AC source.