Imagine that you drop an object of 10 kg, how much will be the acceleration andhow much force causes the acceleration?

Answers

Answer 1
Answer:

If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.

If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".


Related Questions

If you drew magnetic field lines for this bar magnet, which statement would be true
In an evironmental system of subsystem, the mass balance equation is:__________.
In part (a), suppose that the box weighs 128 pounds, that the angle of inclination of the plane is θ = 30°, that the coefficient of sliding friction is μ = 3 /4, and that the acceleration due to air resistance is numerically equal to k m = 1 3 . Solve the differential equation in each of the three cases, assuming that the box starts from rest from the highest point 50 ft above ground. (Assume g = 32 ft/s2 and that the downward velocity is positive.)
What are supersonic speeds
Halogen lightbulbs allow their filaments to operate at a higher temperature than the filaments in standard incandescent bulbs. For comparison, the filament in a standard lightbulb operates at about 2900K, whereas the filament in a halogen bulb may operate at 3400K. Which bulb has the higher peak frequency? Calculate the ratio of the peak frequencies. The human eye is most sensitive to a frequency around 5.5x10^14 Hz. Which bulb produces a peak frequency close to this value?

You perform a double‑slit experiment in order to measure the wavelength of the new laser that you received for your birthday. You set your slit spacing at 1.09 mm and place your screen 8.61 m from the slits. Then, you illuminate the slits with your new toy and find on the screen that the tenth bright fringe is 4.53 cm away from the central bright fringe (counted as the zeroth bright fringe). What is your laser's wavelength ???? expressed in nanometers?

Answers

Answer:

λ = 5.734 x 10⁻⁷ m = 573.4 nm

Explanation:

The formula of the Young's Double Slit experiment is given as follows:

\Delta x = (\lambda L)/(d)\n\n\lambda = (\Delta x d)/(L)

where,

λ = wavelength = ?

L = distance between screen and slits = 8.61 m

d = slit spacing = 1.09 mm = 0.00109 m

Δx = distance between consecutive bright fringes = (4.53\ cm)/(10) = 0.00453 m

Therefore,

\lambda = ((0.00453\ m)(0.00109\ m))/(8.61\ m)

λ = 5.734 x 10⁻⁷ m = 573.4 nm

Suppose that you run along three different paths from location A tolocation B. Along which path(s) would your distance traveled be different than your displacement
(Question 2) please help

Answers

Answer:

Path 3 and Path 1

Explanation:

Along Path1andPath3, the distance travelled will be different than the displacement.

In Path1 and Path3 the distance travelled will be more than the displacement. Whereas, in Path2, the displacement will be as same as the distance travelled because in path 2, the distance travelled itself is the shortest distance from initial point ( A ) to final point ( B ).

But, inPath1 and Path3, the total distance travelled isn't the shortest distance from initial point ( A ) to final point ( B ), hene displacement and distance travelled will be different.

\rule{200}2

Along Path 1 and path 3 your distance traveled be different than your displacement.

Distance is the total length of the path traveled by an object. It is a scalar quantity, meaning it has only magnitude and no direction.

Displacement is the change in the object's position from its initial to its final position. It is a vector quantity, meaning it has both magnitude and direction.

For example, if an object moves in a circle, the distance traveled will be equal to the circumference of the circle, but the displacement will be zero, since the object returns to its initial position.

Another example is if an object moves back and forth along a straight line, the distance traveled will be twice the length of the line, but the displacement will be zero, since the object returns to its initial position.

In general, the distance traveled will always be greater than or equal to the displacement. This is because the distance traveled includes all of the path that the object takes, while the displacement only includes the change in the object's position.

To learn more about displacement, here

brainly.com/question/11934397

#SPJ3

A rock is thrown vertically upward from some height above the ground. It rises to some maximum height and falls back to the ground. What one of the following statements is true if air resistance is neglected? The acceleration of the rock is zero when it is at the highest point. The speed of the rock is negative while it falls toward the ground. As the rock rises, its acceleration vector points upward. At the highest point the velocity is zero, the acceleration is directed downward. The velocity and acceleration of the rock always point in the same direction.

Answers

Answer:

At the highest point the velocity is zero, the acceleration is directed downward.

Explanation:

This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.

I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.

At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.

The energy provided each hour by heat to the turbine in an electric power plant is 9.0×10^12 J. If 5.4 × 10^12 J of energy is exhausted each hour from the engine as heat, what is the efficiency of this heat engine?

Answers

Answer:

60 %

Explanation:

Efficiency is defined as the ratio of output power  to the input power.

Input energy each hour = 9 x 10^12 J

Output energy each hour = 5.4 x 10^12 J

Efficiency = Output energy per hour / input energy per hour

Efficiency = (5.4 x 10^12) / ( 9 x 10^12) = 5.4 / 9 = 0.6

Efficiency in percentage form = 0.6 x 100 = 60 %

Final answer:

The efficiency of a heat engine is calculated using the formula (Energy Input - Energy Output) / Energy Input. Given the figures, the efficiency of the engine is 40%, indicating that 40% of the input energy is converted into work.

Explanation:

The efficiency of a heat engine is determined by the ratio of work output to energy input. In the given scenario, the turbine in an electric power plant is supplied with 9.0 x 10^12 joules of energy, and 5.4 x 10^12 joules of energy is expelled as heat per hour. We can calculate the efficiency using the equation:

Efficiency = (Energy Input - Energy Output) / Energy Input

By substituting the given values, Efficiency = (9.0 x 10^12 J - 5.4 x 10^12 J) / 9.0 x 10^12 J = 0.4 or 40%

This means the heat engine of the power plant has a 40% efficiency, meaning 40% of the energy input is converted into work while 60% is discarded as waste heat.

Learn more about Thermal Efficiency here:

brainly.com/question/13039990

#SPJ3

Lab: Weather Patterns

Answers

A weather pattern is defined as a period of time when the weather remains consistent. In the lab, a lot of observation about weather is obtained

What is the definition of a weather pattern?

A weather pattern is defined as a period of time when the weatherremains consistent. Weather changes are crucial to humanexistence.

because they influence our everyday activities and provide moisture for crops.

The rain does not always end within the day, and gloomy days might last just as long as sunny days. Tornadoes and hurricanes, for example, may inflict tremendous damage.

In the lab the following observation about weather is obtained;

1. We will find the graphs and statistics that indicate signs of climate change and engage with an interactivegraphic.

2. You'll also look at and debate maps of global temperature and precipitation patterns that are changing.

3. This lab will teach you about Earth's biomes and the close relationship that exists between them and the climates that serve to define them.

To learn more about the  weatherpattern refer to the link;

brainly.com/question/2497685

Final answer:

The question pertains to meteorology, climatology, and atmospheric science. These are disciplines that study weather and climate, respectively, and their effects on the planet. Atmospheric Science is a broad field that includes both and employs physics principles.

Explanation:

The question refers to the subjects of meteorology, climatology, and atmospheric science. Meteorology is the study of the atmosphere, atmospheric phenomena, and atmospheric impacts on the Earth's weather. It involves the prediction of weather in the short term based on thousands of measurements of variables such as air pressure and temperature.

Climatology, on the other hand, is the study of climate, which involves analyzing averaged weather conditions over longer time periods using atmospheric data. Unlike meteorologists, climatologists focus on patterns and effects that occur over longer timescales of decades, centuries, and millennia.

Atmospheric Science is a broad field that encompasses both meteorology and climatology, as well as other disciplines that study the atmosphere. This discipline is typically based heavily on physics and involves the study of weather and climate patterns, predictions of developments in weather and climatic events, and the analysis of the effects of these events on the planet and its inhabitants.

Learn more about Weather Patterns here:

brainly.com/question/32220679

#SPJ11

A small charged sphere is attached to a thread and placed in an electric field. The other end of the thread is anchored so that when placed in the field the sphere is in a static situation (all the forces on the sphere cancel). If the thread is horizontal, find the magnitude and direction of the electric field. The sphere has a mass of 0.018 kg and contains a charge of + 6.80 x 103 C. The tension in the thread is 6.57 x 10-2 N. Show your work and/or explain your reasoning. (20 pts)

Answers

Answer:

E = 9.66* 10^(-6) N/C

direction is Horizontal

Explanation:

As we know that the string is horizontal here

so the tension force in the string is due to electrostatic force on it

now we will have

F = qE

so here the force is tension force on it

F = 6.57 * 10^(-2) N

Q = 6.80 * 10^3 C

now we have

6.57 * 10^(-2) = (6.80 * 10^3)E

E = 9.66* 10^(-6) N/C

direction is Horizontal

Final answer:

The magnitude of the electric field on the charged sphere in this scenario is approximately 1.17 x 10^-5 N/C. The direction of the electric field is horizontal, which is the same direction as the tension in the thread.

Explanation:

To start, we can use the equilibrium condition where the tension in the thread is equal to the force due to the electric field and gravity on the sphere. The formula to calculate the electric force is F = qE, and the gravitational force is F = mg, where F is the force, q is the electric charge, E is the electric field, m is the mass of the object, and g is the gravity constant.

Tension - electric force - gravitational force equals zero: T - F_electric - F_gravity = 0. We fill in the previous formulas: T - qE -mg = 0. This can be rearranged to E = (T + mg) / q.

In this case, the sphere's mass m is 0.018 kg, the tension T is 6.57 x 10^-2 N, and the sphere's charge q is 6.80 x 10^3 C, and we use g = 9.81 m/s². So, E = ((6.57 x 10^-2) + (0.018 * 9.81)) / 6.80 x 10^3.

This leads to an electric field magnitude of approximately 1.17 x 10^-5 N/C. The direction of the electric field is the same as the direction of the tension, which is horizontal due to the thread being horizontal.

Learn more about Electric Forces here:

brainly.com/question/20935307

#SPJ3