Answer:
Explanation:
The formula that you are working with is F = m*a
Since mass is one part of the formula if you increase the mass, you are going to increase the force.
The second one is much more difficult to answer because it is basically incomplete. This is one way to interpret it. If you start at a certain speed and increase during a known time period then effectively you are defining acceleration which is "a" in the formula.
Without those modifications, there is no answer.
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for DAC:
⇒
Now for the BAC:
⇒
Now, differentiating w.r.t x:
For maximum angle, = 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 =
After solving the above eqn, we get
x =
The observer should stand at a distance equal to x =
For optimum viewing of a painting in a gallery, an observer should position themselves a distance away from the painting calculated using Pythagoras theorem, forming a right-angled triangle with the painting and the floor. This distance can be expressed as c = √[(h/2 + d)² + (h/2)²], where h is the height of the painting and d is the height from the observer's eye to the bottom of the painting.
In the physics of optics, the viewer should position themselves to where they form a right-angled triangle with the ceiling and the painting leading to the best viewing experience. This is widely known as the 'normal viewing distance'.
Given that the painting has a height h and its lower edge is at a distance d above the observer's eye, the observer should stand a distance away from the wall, which can be calculated using Pythagoras' theorem in right triangles, which states that the square of the hypotenuse (c) is equal to the sum of the square of the other two sides (a and b), i.e., c² = a² + b²
Since the painting height and viewer height forms the right-angle in this case, we have: a = (h/2 + d), and b = h/2. Substituting a and b in Pythagoras equation, we can solve for c which is the required distance: c = √[(h/2 + d)² + (h/2)²]
#SPJ3
Answer:
A
Explanation:
• Nina experiences a force equal to f.
Answer:
Nina experiences a force equal to f
Explanation:
got to get that 2nd answer slot correct too before an abusive expert verifier with an alt comes in and purposely verifies the wrong answer
What is the charge, in μC, on the negative one?
Answer:
The charge of the negative one is 13.27 microcoulombs and the positive one has a charge of 58.27 microcoulombs.
Explanation:
Electric potential energy between two point charges is derived from concept of Work, Work-Energy Theorem and Coulomb's Law and described by the following formula:
(1)
Where:
- Electric potential energy, measured in joules.
, - Electric charges, measured in coulombs.
- Distance between charges, measured in meters.
- Coulomb's constant, measured in kilogram-cubic meters per square second-square coulomb.
If we know that , , and , then the electric charge is:
(2)
Roots of the polynomial are found by Quadratic Formula:
,
Only the first roots offer a solution that is physically reasonable. The charge of the negative one is 13.27 microcoulombs and the positive one has a charge of 58.27 microcoulombs.
Answer:
31.29 m/sec
Explanation:
We have given density of substance
We have convert this into
We know that 1 lb = 0.4535 kg. so 0.14 lb = 0.14×0.4535 = 0.06349 kg
We know that 1 kg = 1000 g ( 1000 gram )
So 0.06349 kg = 63.49 gram
And we know that 1 gram = 1000 milligram
So 63.49 gram
We know that
So
So =\frac{63.49\times 10^3}{0.2249\times 10^{-5}}=276.74\times 10^8lb/m^3[/tex]
In second part we have to convert 70 mi/hr to m/sec
We know that 1 mi = 1609.34 meter
So 70 mi = 70×1609.34 = 112653.8 meter
1 hour = 3600 sec
So 70 mi/hr
Answer:
Explanation:
The kinetic energy of an object can be found by using the formula
m is the mass
v is the velocity
From the question we have
We have the final answer as
Hope this helps you
Answer:
im not sure
Explanation:
Answer:
06 Hours
Explanation:
As per the details given in the question it self, the neutron star X-1 is revolving around its companion star. The orbital period is 1.7 years which means it will complete the revolution in 1.7 years. During the movement in the orbit we will be able to detect the x-rays except for the time when it goes behind the companion star and eclipsed by it as seen from Earth.
Since the x-rays disappear completely for around 6 hours. This clearly means that eclipse period is 06 hours.