Answer:
Answer:
d = 2*0.87 = 1.75 cm
Explanation:
by using flow rate equation to determine the speed in larger pipe
= 591.10 cm/s
= 5.91 m/s
by Bernoulli's EQUATION
solving for v2
v2 = 10.53 m/s
diameter can be determine by using flow rate equation
r = 0.87 cm
d = 2*0.87 = 1.75 cm
Answer:
It does not depend on direction of plane and the left windtips more potential
Explanation:
Because if the Fleming right hand rule is applied the the right han is pointed in the direction of flight, and the fingers are curled in the direction of the magnetic lines. Thus , the lines are vertical and so are pointing down, thus by the right hand rule, the electrons move to the left hand side of the plane, although the potentials are equal and opposite in direction
°C = 5/9 * (°F - 32°)
1 pt each. Using the table above as a guide, complete the following conversions. Be sure to show your work to the side:
1. 5 cm = ________ mm
2. 83 cm = ________ m
3. 459 L = _______ ml
4. .378 Kg = ______ g
5. 45°F = ________ °C
6. 80°C = _________ °F
maximum speed of cheetah is
speed of gazelle is given as
Now the relative speed of Cheetah with respect to Gazelle
now the relative distance between Cheetah and Gazelle is given initially as "d"
now the time taken by Cheetah to catch the Gazelle is given as
so by rearranging the terms we can say
so above is the relation between all given variable
pressure P1 of the water in the pipe is 2 atm .
A short segment of the pipe is constricted to
a smaller diameter of 2.4 cm
(IMAGE)
What is the gauge pressure of the water
flowing through the constricted segment? Atmospheric pressure is 1.013 × 10^5 Pa . The density of water is 1000 kg/m^3
. The viscosity
of water is negligible.
Answer in units of atm
Answer:
1.75 atm
Explanation:
Mass is conserved, so the mass flow before the constriction equals the mass flow after the constriction.
m₁ = m₂
ρQ₁ = ρQ₂
Q₁ = Q₂
v₁A₁ = v₂A₂
v₁ πd₁²/4 = v₂ πd₂²/4
v₁ d₁² = v₂ d₂²
Now use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Since h₁ = h₂:
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Writing v₂ in terms of v₁:
P₁ + ½ ρ v₁² = P₂ + ½ ρ (v₁ d₁²/d₂²)²
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₁² (d₁/d₂)⁴
P₁ + ½ ρ v₁² (1 − (d₁/d₂)⁴) = P₂
Plugging in values:
P₂ = 2 atm + ½ (1000 kg/m³) (4.4 m/s)² (1 − (3.3 cm / 2.4 cm)⁴) (1 atm / 1.013×10⁵ Pa)
P₂ = 1.75 atm
Answer:
Heat flux = (598.3î + 204.3j) W/m²
a) Magnitude of the heat flux = 632.22 W/m²
b) Direction of the heat flux = 18.85°
Explanation:
- The correct question is the first image attached to this solution.
- The solution to this question is contained on the second and third images attached to this solution respectively.
Hope this Helps!!!