Answer:
a.
b.
Explanation:
From the data given, the radius is 5.0m, and the time taken to complete one circle is 4.0secs
Since the motion is in a circular part, we can conclude that the total distance covered in this time is given as circumference of the circle.
which is expressed as
To determine the speed, we use the equation
The acceleration as required is expressed as
if the speed increase and it takes 3secs to complete one circle, the speed is
and the acceleration becomes
The acceleration of the passengers in the vertical circle carnival ride is 19.6 m/s^2. When the time taken to complete one circle is 3.0 s, the new acceleration is 26.13 m/s^2.
The acceleration of the passengers can be determined using the centripetal acceleration formula, which is given by a = v^2 / r.
In this case, the velocity v can be found by dividing the circumference of the circle (2πr) by the time taken to complete one circle (T). The radius r is given as 5.0 m. Plugging in the values, we have:
a = (v^2) / r = ((2πr / T)^2) / r = (4π^2r) / T^2 = (4π^2 * 5.0) / 16.0 = 19.6 m/s^2
To find the new acceleration when the time taken to complete one circle is 3.0 s, we can use the proportional reasoning to determine the relationship between the two accelerations. Since the time is inversely proportional to the acceleration, when T is 3.0 s, the new acceleration arad can be found using the equation:
arad / 19.6 = 4.0 / 3.0
Simplifying the equation, arad = (19.6 * 4.0) / 3.0 = 26.13 m/s^2
For more such questions on acceleration, click on:
#SPJ3
To find the final pressure, use the ideal gas law equation PV = nRT, where P is the initial pressure, V is the initial volume, n is the number of moles of gas, R is the gas constant, and T is the initial temperature. Rearrange the equation and plug in the given values to find that the final pressure is 3.33 bar.
To find the final pressure, we can use the ideal gas law equation: PV = nRT, where P is the initial pressure, V is the initial volume, n is the number of moles of gas, R is the gas constant, and T is the initial temperature.
Since the volume and the amount of air are constant, we can rearrange the equation to solve for the final pressure:
P2 = P1 * (T2 / T1),
where P2 is the final pressure, T2 is the final temperature, and T1 is the initial temperature.
By plugging in the values from the problem, we can find that the final pressure is 3.33 bar.
#SPJ3
c.) What thickness of board (calculated 0.1 cm) would it take to stop the bullet, assuming that the acceleration through all boards is the same? ________cm
Answer:
a)
b)
c)s=14.92 cm
Explanation:
Given that
u= 470 m/s
v = 270 m/s
s= 10 cm
a)
We know that
b)
v= u + a t
c)
To stop the bullet it means that the final velocity will be zero.
s=14.92 cm
Answer:
the magnitude of the ball's acceleration as it comes to rest on the foam is 817.5 m/s²
Explanation:
Given the data in the question;
initial velocity; u = 0 m/s
height; h = 2.5 m
we find the velocity of the ball just before it touches the foam.
using the equation of motion;
v² = u² + 2gh
we know that acceleration due gravity g = 9.81 m/s²
so we substitute
v² = ( 0 )² + ( 2 × 9.81 × 2.5 )
v² = 49.05
v = √49.05
v = 7.00357 m/s
Now as the ball touches the foam
final velocity v₀ = 0 m/s
compresses S = 3 cm = 0.03 m
so
v₀² = v² + 2as
we substitute
( 0 )² = 49.05 + 0.06a
0.06a = -49.05
a = -49.05 / 0.06
a = -817.5 m/s²
Therefore, the magnitude of the ball's acceleration as it comes to rest on the foam is 817.5 m/s²
Two things are said to be in contact if the smallest distance between a point in one of them and a point in the other one is zero.
Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is
For N = 1
We need to calculate the current
Using formula of current
Put the value of emf
Now, if the number of turn is 22 , then induced emf would be
Then the current would be
Hence, The current would be same in both situation.
height at which the ball was hit is 3.0 m tall, how far did the ball go horizontally
before it hit the ground?
5.5 m
3.6 m
O 4.3 m
4.2 m
Answer:
5.5 is the correct answer
please keeps as Brainly list