Answer:
Information from the leading mathematicians was considered "classified".
Answer:
When the jet reaches a speed of 181 m/s, its displacement is 296 m.
Explanation:
Hi there!
The equation of position and velocity of an object traveling with constant acceleration along a straight line are the following:
x = x0 + v0 · t + 1/2 · a · t²
v = v0 + a · t
Where:
x = position of the object at time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
v = velocity of the object at time t.
If we place the origin of the frame of reference at the point where the jet starts moving, then, x0 = 0. Since the jet starts from rest, v0 is also zero. Then the equations get reduced to the following:
x = 1/2 · a · t²
v = a · t
We know the acceleration and the final velocity of the jet. So, using the equation of velocity, we can find the time it takes the jet to reach that velocity. Then, we can calculate the position of the jet at that time. Since the initial position is zero, the final position of the jet will be equal to the displacement (because displacement = final position - initial position).
v = a · t
v/a = t
181 m/s / 55.3 m/s² = t
t = 3.27 s
The final position of the jet will be:
x = 1/2 · a · t²
x = 1/2 · 55.3 m/s² · (3.27 s)²
x = 296 m
When the jet reaches a speed of 181 m/s, its displacement is 296 m.
The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.
To find displacement using constant acceleration,
we can use the following equation:
displacement = (final velocity)^2 - (initial velocity)^2 / 2 * acceleration.
In this case, the initial velocity is 0 m/s and the final velocity is 181 m/s.
The acceleration is given as 55.3 m/s^2.
Plugging in these values, we get:
displacement = (181)^2 - (0)^2 / 2 * 55.3 = 16515 m.
The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.
Learn more about displacement here:
#SPJ3
Answer with Explanation:
We are given that
Mass , m=372 g=
1 kg=1000g
Maximum acceleration, a=
Maximum speed ,v=1.75 m/s
a.We know that
Maximum acceleration, a=
Maximum speed, v=
Angular frequency,
b.Substitute the value of angular frequency
Hence, the amplitude=0.17 m
c.Spring constant,k=
Using the formula
Hence, the spring constant,k=37.6 N/m
The unit that should be used to measure energy when calculating specific heat capacity is Energy is in Joules ( J ).
The specific heat capacity should be determined in joules per kilogram degree-celsius ( J k g − 1 ∘ C − 1 ).
It is to be supplied for the substance with respect to mass and it increased the temperature.
Hence, The unit that should be used to measure energy when calculating specific heat capacity is Energy is in Joules ( J ).
Learn more about unit here: brainly.com/question/16660726
The unit used to measure energy when calculating specificheat capacity is the joule (J).
The joule (J), a unit used to quantify energy, is used to calculate specific heat capacity. In the International System of Units (SI), the joule serves as the default unit of energy.
It is described as the quantity of energy that is delivered when one newton of force is exerted across a one-meter distance.
Thus, the quantity of heat energy needed to increase the temperature of a particular substance by a specific amount is measured as specificheat capacity. J/kg°C, or joules per kilogramme per degree Celsius, is the unit of measurement.
For more details regarding specificheat, visit:
#SPJ6
Answer:
1360 m
Explanation:
Time taken for the thunder to travel the distance to the hikers = 4 seconds
Speed of the thunder = 340 m/s
Speed of light = 3×10⁸ m/s
It can be seen that the speed of light is substantially faster than the speed of sound. This is the reason why there is a delay in seeing the lightning and hearing the thunder.
Distance = Speed × Time
Hence, the lightning strike was 1360 m away from the hikers
Measure the circumference of the tire before and after riding.
B.
Measure the total distance traveled on his bike and divide this by how long it took him.
C.
Measure the wear on his treads before and after riding a certain number of laps.
D.
Time how long it takes him to ride 5 laps around his cul-de-sac.
Answer:
C.
Measure the wear on his treads before and after riding a certain number of laps.
Answer:
Measure the wear on his treads before and after riding a certain number of laps.
Explanation:
By riding in a circular motion the inside of the tire will be in contact with the road more than the outside of the tire. Thus, to see if the constant circular motion had any effect on his tires David should measure the tread depth on both the inside and the outside of the tires before the experiment and measure the inside and the outside of the tires (at the same location on the tires) after the experiment. Then he can compare the tread loss on the inside of the tire to the tread loss on the outside of the tire.
Answer:
Seismology.
Explanation: