Answer:
B. Energy increases with decreasing wavelength and increasing frequency.
Explanation:
Answer:
U/U₀ = 2
(factor of 2 i.e U = 2U₀)
Therefore, the energy stored in the capacitor is doubled when the plate separation is doubled while the capacitor has been disconnected
Explanation:
Energy stored in a capacitor can be expressed as;
U = 0.5CV^2 = Q^2/2C
And
C = ε₀ A/d
Where
C = capacitance
V = potential difference
Q = charge
A = Area of plates
d = distance between plates
So
U = Q^2/2C = dQ^2/2ε₀ A
The initial energy of the capacitor at d = d₀ is
U₀ = Q^2/2C = d₀Q^2/2ε₀ A ....1
When the plate separation is increased after the capacitor has been disconnected, the charge Q of the capacitor remain constant.
The final energy stored in the capacitor at d = 2d₀ is
U = 2d₀Q^2/2ε₀ A ...2
The factor U/U₀ can be derived by substituting equation 1 and 2
U/U₀ = (2d₀Q^2/2ε₀ A)/( d₀Q^2/2ε₀ A )
Simplifying we have;
U/U₀ = 2
U = 2U₀
Therefore, the energy stored in the capacitor is doubled when the plate separation is doubled while the capacitor has been disconnected.
Answer:
315.5 N/m
Explanation:
m = 500 g = 0.5 kg
T = 0.25 second
Total energy, E = 4 J
Let K be the spring constant.
The formula for the time period is given by
K = 315.5 N/m
Complete Question
A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 . It is used to charge two storage batteries connected in series, each having an emf of 6.00 V and internal resistance of 0.300
. If the charging current is to be 4.00 A, (a) what additional resistance should be added in series? At what rate does the internal energy increase in (b) the supply, (c) in the batteries, and (d) in the added series resistance? (e) At what rate does the chemical energy increase in the batteries?
Answer:
a
The additional resistance is
b
The rate at which internal energy increase at the supply is
c
The rate at which internal energy increase in the battery is
d
The rate at which internal energy increase in the added series resistance is
e
the increase rate of the chemically energy in the battery is
Explanation:
From the question we are told that
The open circuit voltage is
The internal resistance is
The emf of each battery is
The internal resistance of the battery is
The charging current is
Let assume the the additional resistance to to added to the circuit is
So this implies that
The total resistance in the circuit is
Substituting values
And the difference in potential in the circuit is
=>
Now according to ohm's law
Substituting values
Making the subject of the formula
So
The increase rate of internal energy at the supply is mathematically represented as
Substituting values
The increase rate of internal energy at the batteries is mathematically represented as
Substituting values
The increase rate of internal energy at the added series resistance is mathematically represented as
Substituting values
Generally the increase rate of the chemically energy in the battery is mathematically represented as
Substituting values
Answer:
V = 575.6 Volts
Explanation:
As we know that surface area of the equi-potential surface is given as
so we will say
Now the potential due to a point charge is given as
Answer:
Option C is the correct answer.
Explanation:
Heat required to melt solid in to liquid is calculated using the formula
H = mL, where m is the mass and L is the latent heat of fusion.
Latent heat of fusion for water = 333.55 J/g
Mass of ice = 0.3 kg = 300 g
Heat required to convert 0.3 kilogram of ice at 0°C to water at the same temperature
H = mL = 300 x 333.55 = 100,375 J
Option C is the correct answer.
Answer
3.340J
Explanation;
Using the relation. Energy stored in capacitor = U = 7.72 J
U =(1/2)CV^2
C =(eo)A/d
C*d=(eo)A=constant
C2d2=C1d1
C2=C1d1/d2
The separation between the plates is 3.30mm . The separation is decreased to 1.45 mm.
Initial separation between the plates =d1= 3.30mm .
Final separation = d2 = 1.45 mm
(A) if the capacitor was disconnected from the potential source before the separation of the plates was changed, charge 'q' remains same
Energy=U =(1/2)q^2/C
U2C2 = U1C1
U2 =U1C1 /C2
U2 =U1d2/d1
Final energy = Uf = initial energy *d2/d1
Final energy = Uf =7.72*1.45/3.30
(A) Final energy = Uf = 3.340J