To solve this problem it is necessary to apply the related concepts to the moment of inertia in a disk, the conservation of angular momentum and the kinematic energy equations for rotational movement.
PART A) By definition we know that the moment of inertia of a disk is given by the equation
Where
M = Mass of the disk
R = Radius
Replacing with our values we have
The initial angular momentum then will be given as
Therefore the total moment of inertia of the table and the disc will be
The angular velocity at the end point will be given through the conservation of the angular momentum for which it is understood that the proportion of inertia and angular velocity must be preserved. So
Therefore the new angular velocity is 1.15rad/s
PART B) Through the conservation of rotational kinetic energy we can identify that its total change is subject to
Therefore the change in kinetic energy is 0.034J
Answer:
4833J
Explanation:
Length=0.777
mass=2.67
# rods= 5
ω=573 rpm--> rad/s
I=kgm^2
K=1/2(number of rods)(I)(ω)=J
I know it's very late, but hope this helps anyone else trying to find the answer.
The amount of work done per second by the horse exerting a force of 1800 N on a wagon moving with a speed of 0.4 m/s is 720 J/s.
Power is the workdone by a body in one second.
To calculate the work done by the horse in one seconds, we use the formula below
Formula:
Where:
From the question,
Given:
Substitute these values into equation 1
Hence, the amount of work done per second by the horse is 720 J/s.
Learn more about power here: brainly.com/question/25864308
#SPJ1
Complete question: A wagon is pulled at a speed of 0.40 m/s by a horse exerting 1800 Newtons of horizontal Force. how much work was done by the horse per second.
Answer:
The speed is
Explanation:
From the question we are told that
The angle of slant is
The weight of the toolbox is
The mass of the toolbox is
The start point is from lower edge of roof
The kinetic frictional force is
Generally the net work done on this tool box can be mathematically represented as
The workdone due to weigh is =
The workdone due to friction is =
Substituting this into the equation for net workdone
Substituting values
According to work energy theorem
From the question we are told that it started from rest so u = 0 m/s
Making v the subject
Substituting value
Answer:
h = 16.9 m
Explanation:
When a ball is thrown upward, its velocity gradually decreases, until it stops for a moment, when it reaches the maximum height, while its height increases. Thus, the law conservation of energy states in this case, that:
Kinetic Energy Lost by Ball = Potential Energy Gained by Ball
(0.5)m(Vf² - Vi²) = mgh
h = (0.5)(Vf² - Vi²)/g
where,
Vf = Final Speed of Ball = 0 m/s (Since, ball stops for a moment at highest point)
Vi = Initial Speed of Ball = 18.2 m/s
g = acceleration due to gravity = - 9.8 m/s² ( negative for upward motion)
h = maximum height the ball can reach = ?
Therefore, using values in the equation, we get:
h = (0.5)[(0 m/s)² - (18.2 m/s)²]/(-9.8 m/s²)
h = 16.9 m