a Chromatin
b Centromere
C Centriole
Check it
Sister chromatids are held together at the centromere on a duplicated chromosome. The centromere serves as the point of attachment. Chromatin and centrioles do not serve this function. The correct option is b) Centromere.
Two identical sister chromatids are held together at the centromere on a duplicated chromosome. The centromere serves as the point of attachment for sister chromatids. During cell division, the spindle fibers attach themselves to the centromere to pull apart the sister chromatids into two separate cells. This process helps ensure that each new cell receives an identical and complete set of chromosomes. Neither chromatin nor centriole holds sister chromatids together. Chromatin refers to the material chromosomes are made up of, which includes DNA and protein, while centrioles are involved in cell division. In summary, the precise answer to your question is option b) Centromere.
#SPJ6
Answer:
An apple.
A person.
A table.
Air.
Water.
A computer.
Paper.
Iron.
Hope this helps you
Answer:
your boddy is made of mater and a clock too it is still a mater of time.
Explanation:
Answer:
The mixture is not in equilibrium, the reaction will shift to the left.
Explanation:
Based on the equilibrium:
Fe³⁺+ HSCN ⇄ FeSCN²⁺ + H⁺
kc = 30 = [FeSCN²⁺] [H⁺] / [Fe³⁺] [HSCN]
Where [] are concentrations at equilibrium. The reaction is in equilibrium when the ratio of concentrations = kc
Q is the same expression than kc but with [] that are not in equilibrium
Replacing:
Q = [10.0M] [1.0M] / [0.1M] [0.1M]
Q = 1000
As Q > kc, the reaction will shift to the left in order to produce Fe³⁺ and HSCN untill Q = Kc
The mixture's equilibrium status can be determined by comparing the reaction quotient (Q) with the equilibrium constant (Kc). If Q < Kc, the reaction proceeds to the right (products) to achieve equilibrium. If Q > Kc, the reaction proceeds to the left (reactants) to achieve equilibrium.
To determine if the mixture is initially at equilibrium, we need to calculate and compare the reaction quotient (Q) and the equilibrium constant (Kc) of the reaction. The reaction quotient is a measure of the relative concentrations of products and reactants at any point in time, whereas Kc, is the measure of these concentrations only at equilibrium.
Assuming that the reaction in question is: Fe3+ + HSCN ↔ FeSCN2+ + H + . In this case,
Q = [FeSCN2+]/[Fe3+][HSCN] = 10 / (0.1 * 0.1) = 1000. If Kc is less than 1000, the reaction is not at equilibrium and will need to proceed to the left (reactants) to reach equilibrium. Conversely, if Kc is greater than 1000, the reaction is not at equilibrium and will need to proceed to the right (products).
#SPJ11
b. 0.03954 g to 0.040 g
c. 20.0332 g to 20,0 g
d. 04.05438 g to 4,054 g
e. 103.692 g to 103.7g
Answer:
c. 20.0332 g to 20,0 g
Explanation:
A significant figure is each of the digits of a number that are used to express it to the required degree of accuracy, starting from the first non-zero digit, with the exception of the trailing zeros.
Which of the following examples illustrates a number that is correctly rounded to three significant figures?
a. 109 526 g to 109 500 g. NO. The rounded number has 4 significant figures: 109 500.
b. 0.03954 g to 0.040 g. NO. The rounded number has 2 significant figures: 0.040.
c. 20.0332 g to 20.0 g. YES. The rounded number has 3 significant figures: 20.0.
d. 04.05438 g to 4.054 g. NO. The rounded number has 4 significant figures: 4.054.
e. 103.692 g to 103.7g. NO. The rounded number has 4 significant figures: 103.7.
OB. Concentration
OC. Mass
OD. Volume
Molarity is a measure of concentration in a solution.
Molarity is a measure of concentration in a solution. It represents the amount of a solute dissolved in a given volume of solvent. Molarity is calculated by dividing the moles of solute by the volume of the solution in liters.