Impulse is ___ momentum. A. only a decrease in
B. a change in
c. not related to
D. only an increase in​

Answers

Answer 1
Answer:

Answer:

option B is correct

Explanation:

impulse is a change in momentum


Related Questions

From the combinations of substances listed below, which would most likely be miscible ineach other?(33 Points)A.polar water, nonpolar oilB.polar vinegar, nonpolar nail polishC. polar bleach, polar waterD.nonpolar mineral oil, polar alcohol
Which of the two aqueous solutions will be a better conductor of electricity in the following examples? Explain why in each case.a)1.0M NaCl vs. 0.010 M Naclb)0.10 M NaCl vs. 0.10 M Al2(SO4)3 (assume complete dissociation of both salts).c) 1.0 mole of NaCl added to water vs. 1.0 mole of pbCl2 added to water (hint: remember the solubility rules).
A ______________________ is required to cause atoms to bond together or be separated from one another. *a physical changeb phase changec radioactive decayd chemical reaction
Which of the following electron configurations represents an excited state of the indicated atom? Group of answer choices a.Na: 1s2 2s2 2p6 3s2 3p2 3s1 b.Ne: 1s2 2s2 2p6 c.N: 1s2 2s2 2p3 d.P: 1s2 2s2 2p6 3s2 3p2 4s1 e.He: 1s2
Systematic name for: Silver Nitrate.molar mass of Ag:molar mass of N:molar mass of O:and the overall molar mass for Silver Nitrate.

Using a density of 1.0 g/mL for the water added and adding in the mass of the lithium nitrate, what is the total mass of the solution?

Answers

The total mass of the solution of lithiumnitrate solution has been 99.7 grams.

Density can be defined as the mass of the solute per unit volume. The density can be expressed as g/ml or kg/L.

The mass of given Lithium nitrate = 2.5 grams.

The mass of water can be given as:

Density = \rm (Mass)/(Volume)

Volume of water = 97.2 ml.

The total mass of solution:

Mass of water = Density * Volume

Mass of water = 1 * 97.2 grams

Mass of water = 97.2 grams

The total mass = Mass of lithium nitrate + mass of water

= 2.5 + 97.2 grams

= 99.7 grams.

The total mass of the solution of lithiumnitrate solution has been 99.7 grams.

For more information about density, refer to the link:

brainly.com/question/14940265

Answer:

The total mass of the solution = 99.7 g

Note: The question is incomplete. The complete question is given below:

A "coffee-cup" calorimetry experiment is run for the dissolution of 2.5 g of lithium nitrate placed into 97.2 mL of water. The temperature of the solution is initially at 23.5oC. After the reaction takes place, the temperature of the solution is 28.3 oC.  

1. Using a density of 1.0 g/mL for the water added and adding in the mass of the lithium nitrate, what is the total mass of the solution and solid?

Explanation:

mass = density * volume

density of water = 1.0 g/mL; volume of water = 97.2 mL

mass of water = 1.0 g/L * 97.2 mL

mass of water = 97.2 g

mass of lithium nitrate = 2.5 g

A solution is made by dissolving a solute (usually solid) in a solvent (usually a liquid). The solute in this reaction is lithium nitrate and the solvent is water.

Total mass of solution = mass of water + mass of lithium nitrate

Total mass of solution = 97.2 g + 2.5 g = 99.7 g

Therefore, total mass of the solution = 99.7 g

Fermentation is a complex chemical process of wine making in which glucose is converted into ethanol and carbon dioxide: C6H12O6 → 2C2H5OH + 2CO2 glucose ethanol Starting with 945.0 g of glucose, what is the maximum amount of ethanol in grams and in liters that can be obtained by this process (density of ethanol = 0.789 g/mL)?

Answers

Answer:

Maximum amount of ethanol - 483g, 0.612L.

What is the number of neutrons in Hydrogen, O (A= 1, Z= 1)?

Answers

Answer:

Explanation:

Hydrogen has 1 proton and one nuetron

Oxygen has 8 protons nad 8 neutrons

If you have 3.0 moles of argon gas at STP, how much volume will the argon take up?

Answers

if you have 3.0 moles of argon gas at STP u would take up 2.5 volume

Write the balanced equation for the equilibrium reaction for the dissociation ofsilver chloride in water, and write the K expression for this reaction. Then create an ICE chart. Since we know the equilibrium concentration of the silver ion, we can solve for Ksp.Does it agree with the literature value

Answers

Answer:

See explanation

Explanation:

Hello there!

In this case, since the the concentrations are not given, and not even the Ksp, we can solve this problem by setting up the chemical equation, the equilibrium constant expression and the ICE table only:

AgCl(s)\rightleftharpoons Ag^+(aq)+Cl^-(aq)

Next, the equilibrium expression according to the produced aqueous species as the solid silver chloride is not involved in there:

Ksp=[Ag^+][Cl^-]

And therefore, the ICE table, in which x stands for the molar solubility of the silver chloride:

       \ \ \ \ \ \ \ \ \ \ \ \ \ \ AgCl(s)\rightleftharpoons Ag^+(aq)+Cl^-(aq)

I          -                   0             0

C        -                   +x           +x

E        -                    x             x

Which leads to the following modified equilibrium expression:

Ksp=x^2

Unfortunately, values were not given, and they cannot be arbitrarily assigned or assumed.

Regards!

Consider the following reaction at 298K.I2 (s) + Pb (s) = 2 I- (aq) + Pb2+ (aq)
Which of the following statements are correct?
Choose all that apply.
ΔGo > 0
The reaction is product-favored.
K < 1
Eocell > 0
n = 2 mol electrons
B-

Answers

Answer:

Eªcell > 0; n = 2

Explanation:

The reaction:

I2 (s) + Pb (s) → 2 I- (aq) + Pb2+ (aq)

Is product favored.

A reaction that is product favored has ΔG < 0 (Spontaneous)

K > 1 (Because concentration of products is >>>> concentration reactants).

Eªcell > 0 Because reaction is spontaneous.

And n = 2 electrons because Pb(s) is oxidizing to Pb2+ and I₂ is reducing to I⁻ (2 electrons). Statements that are true are:

Eªcell > 0; n = 2