a length of #8 copper wire (radius = 1.63 mm) has a mass of 24.0 kg and a resistance of 2.061 ohm per km. what is the overall resistance of the wire

Answers

Answer 1
Answer:
m = pVol

p : copper density 

Vol: volume

Vol = Al

A: area

L: length

m = p * A * L

L = m/p*A

To find the total resistance

Rtotal = R per Km * L/1000 

Actually I think the question is missing the copper density.

Related Questions

You would like to make a 100 mL buffer solution at pH 8.00. Assuming you would like to accomplish this with a hypochlorous acid (HOCl) buffer (HOCl/NaOCl), Ka= 3.0 * 10-8. If the solution is 0.3 M in HOCl, what concentration of NaOCl would be necessary in the buffer solution to obtain a pH of 8.0?
How many moles are in 12.0 grams of O2
Describe the relationship between predator and prey in a balanced ecosystem. Please help I'll give brainliest.
You have been injured in the laboratory (cut,burn,etc) first you should
What's another name for potential energy? 1. kinetic 2. stored3. mechanical4. moving

Identify the true statement(s) about the valence bond theory. 1. The strength of a bond depends on the amount of overlap between the two orbitals of the bonding atoms. 2. The greater the overlap between two bonding atoms, the lesser the bond strength. 3. Orbitals bond in the directions in which they protrude or point to obtain maximum overlap

Answers

Answer:

The strength of a bond depends on the amount of overlap between the two orbitals of the bonding atoms

Orbitals bond in the directions in which they protrude or point to obtain maximum overlap

Explanation:

The valence bond theory was proposed by Linus Pauling. Compounds are firmed by overlap of atomic orbitals to attain a favourable overlap integral. The better the overlap integral (extent of overlap) the better or stringer the covalent bond.

Orbitals overlap in directions which ensure a maximum overlap of atomic orbitals in the covalent bond.

Answer:

THE STRENGTH OF THE BOND DEPENDS ON THE AMOUNT OF OVERLAP BETWEEN THE TWO ORBITALS OF THE BONDING ATOMS

ORBITALS BOND IN THE DIRECTION OR POINT IN WHICH THEY PROTRUDE OR POINT TO OBTAIN MAXIMUM OVERLAP.

Explanation:

Valence bond theory describes the covalent bond as the overlap of half-filled atomic orbital yields a pair of electrons shared between the two bonded atoms. Overlapping of orbitals occurs when a portion of one orbital and the other occur in the same region of space. The strength of a bond is determined by the amount of overlap between the two orbitals of the bonding atoms. In other words, orbitals that overlap more and in the right orientation of maximum overlapping form stronger bonds that those with less overlap and right orientation for maximum overlap. The bonding occurs at a varying distance in different atoms from which it obtains its stable energy caused by the increase in the attraction of nuclei for the electrons.

Orbitals also bond in the direction to obtain maximum overlap as orientation of the atoms also affect overlap. The greater overlap occurs when atoms are oriented on a direct line mostly end to end or side by side between the two nuclei depending on the type of bond formed. A sigma bond is formed when atoms overlap end to end in which a straight line exists between the two atoms that is the internuclear axis indicating the concentrated energy  density in that region. Pi bond exits in when overlap occurs in the side -to -side orientation and the energy density is concentrated opposite the internuclear axis.

Calculate the mass of a sample of lead (cPb = 0.16 J/g℃) when it loses 200 J cooling from 75.0℃ to 42.0℃.

Answers

looses 299 please collins 75.0

Practice the Skill 21.15b When the following ketone is treated with aqueous sodium hydroxide, the aldol product is obtained in poor yields. In these cases, special distillation techniques are used to increase the yield of aldol product. Predict the aldol addition product that is obtained, and propose a mechanism for its formation. For the mechanism, draw the curved arrows as needed. Include lone pairs and charges in your answer. Do not draw out any hydrogen explicitly in your products. Do not use abbreviations such as Me or Ph.

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below for the step by step explanation to the question above.

14) Describe the Cloud Model.

Answers

Electron cloud is an informal term in physics. It is used to describe where electrons are when they go around the nucleus of an atom. The electron cloud model is different from the older Bohr atomic model by Niels Bohr. Bohr talked about electrons orbiting the nucleus.

Which of the following describes the element Mg. Choose all that apply. is very reactive as a metal forms a basic solution in water is found in nature only combined with other elements reacts vigorously with alkali metals to form salts consists of diatomic molecules in elemental form is one of the group of the least reactive elements

Answers

Answer:

The statements that describe Mg are:

1. is very reactive as a metal  

2. forms a basic solution in water  

3. is found in nature only combined with other elements

Explanation:

Magnesium is a s-block chemical element that belongs to group 2 and period 3 of the periodic table. It is a reactive alkaline earth metal that exists in nature only in the combined state with elements such as carbon, calcium and oxygen.

Magnesium reacts with water at room temperature, to give strongly basic metal oxide of the formula, MgO, which forms a basic solution in water.

It also reacts vigorously with halogens such as chlorine and bromine, to form salts.

Final answer:

Magnesium is a highly reactive alkaline earth metal that forms a basic solution in water and can react vigorously with alkali metals to form salts. It consists of diatomic molecules in its elemental form.

Explanation:

Magnesium is one of the alkaline earth metals, which are found in Group 2 of the periodic table. It is a highly reactive metal that forms a basic solution in water and can react vigorously with alkali metals to form salts. Magnesium also consists of diatomic molecules in its elemental form. However, it is not one of the least reactive elements; rather, it is one of the more reactive elements in Group 2.

Learn more about Alkaline Earth Metals here:

brainly.com/question/37138058

#SPJ12

To measure the solubility product of lead (II) iodide (PbI2) at 25°C, you constructed a galvanic cell that is similar to what you used in the lab. The cell contains a 0.5 M solution of a lead (II) nitrate in one compartment that connects by a salt bridge to a 1.0 M solution of potassium iodide saturated with PbI2 in the other compartment. Then you inserted two lead electrodes into each half-cell compartment and closed the circuit with wires. What is the expected voltage generated by this concentration cell? Ksp for PbI2 is 1.4 x 10-8. Show all calculations for a credit.

Answers

Answer:

0.2320V

Explanation:

Voltage can be defined as the amount of potential energy available (work to be done) per unit charge, to move charges through a conductor.

Voltage can be generated by means other than rubbing certain types of materials against each other.

Please look at attached file for solution to the problem.

Final answer:

The expected voltage generated by this concentration cell is approximately 0.113 V.

Explanation:

To calculate the voltage generated by the concentration cell, we can use the Nernst equation. The Nernst equation relates the concentration of the ions in the two compartments to the voltage of the cell. The equation is:

E = E° - (RT/nF) ln(Q)

Where:

  • E is the voltage of the cell
  • E° is the standard cell potential
  • R is the gas constant (8.314 J/mol·K)
  • T is the temperature in Kelvin (25 + 273 = 298 K)
  • n is the number of moles of electrons transferred (2 in this case)
  • F is Faraday's constant (96,485 C/mol)
  • ln(Q) is the natural logarithm of the reaction quotient

The reaction quotient (Q) can be calculated using the concentrations of the lead (II) and iodide ions in each compartment.

Since this is a concentration cell, the standard cell potential (E°) for this system is 0 V. Therefore, the equation simplifies to:

E = - (RT/nF) ln(Q)

Now we can calculate the voltage:

  1. Calculate Q:

The solubility product constant (Ksp) for PbI2 is 1.4 x 10-8. Because PbI2 is in a saturated solution, the concentration of Pb2+ ions and I- ions are both equal to the solubility of PbI2. We can substitute these values into the equation to calculate Q:

Q = [Pb²+] x [I-]

Q = (1.4 x 10-8) x (1.4 x 10-8) = 1.96 x 10-16

  1. Calculate E:

Now we can calculate the voltage using the given values:

For the Nernst equation, we need to convert the temperature to Kelvin:

T = 25°C + 273 = 298 K

Substitute the values into the equation:

E = - (8.314 J/mol·K x 298 K / 2 x 96,485 C/mol) ln(1.96 x 10-16)

E ≈ 0.113 V

Therefore, the expected voltage generated by this concentration cell is approximately 0.113 V.

Learn more about Voltage generated by a concentration cell here:

brainly.com/question/30226316

#SPJ11