Answer:
0.00124 V
Explanation:
Parameters given:
Initial circumference = 162 cm
Rate of decrease of circumference = 14 cm/s
Magnetic field, B = 0.5 T
Time, t = 8 secs
The magnitude of the EMF induced in the loop is given as:
V = (-NBA) / t
Where N = number of turns = 1
B = magnetic field
A = area of loop
t = time taken
First, we need to find the area of the loop.
To do this, we will find the radius after the loop circumference has decreased for 8 secs.
The rate of decrease of the circumference is 14 cm/s and 8 secs has passed, which means after 8 secs, it has decreased by:
14 * 8 = 112 cm
The new circumference is:
162 - 112 = 50 cm = 0.5 m
To get radius:
C = 2 * pi * r
r = C / (2 * pi)
r = 0.5 / (2 * 3.142)
r = 0.0796 m
The area is:
A = pi * r²
A = 3.142 * 0.0796²
A = 0.0199 m²
Therefore, the EMF induced is:
V = (-1 * 0.5 * 0.0199) / 8
V = -0.00124V
This is the EMF induced in the coil.
The magnitude is |-0.00124| V = 0.00124 V.
Answer:
Explanation:
We are given that
Amount of work needed to bring a point charge q0 from infinity to a point P=
We know that potential at point P=
Where U=Amount of work needed to bring a point charge q from infinity to a point P
Initially ,
New charge, q=
Then, work done,U=
Hence, the amount of work needed to bring a new charge 4q0 from infinity to point P=
Answer:
Explanation:
V = u / q,
Work = P = V
1U / 1/4 = 4U
T =1/f = 1/4.31s = 0.232hz correct?
Answer:correct
Explanation: Period T is the reciprocal of frequency (i.e T=1/f)
Frequency is the reciprocal of period (i.e F= 1/T)
Therefore if T=4.31s
Frequency F= 1/4.31s=0.232hz
Answer:
the correct option is C
Explanation:
The intensity of a lamp depends on the power of the lamp that is provided by the current flowing over it, therefore the intensity would increase if we raise the current.
Another way to increase the intensity is to decrease the area with a focusing lens, as the intensity is power over area, decreasing the area increases the power.
When we see the possibilities we see that the correct option is C
b 2.5 m/s
c 10 m/s
d 5.2 m/s
Answer:
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s
Answer:
F = 6[N].
Explanation:
To solve this problem we must use the principle of conservation of linear momentum, which tells us that momentum is conserved before and after applying a force to a body. We must remember that the impulse can be calculated by means of the following equation.
where:
P = impulse or lineal momentum [kg*m/s]
m = mass = 10 [kg]
v = velocity [m/s]
F = force [N]
t = time = 5 [s]
Now we must be clear that the final linear momentum must be equal to the original linear momentum plus the applied momentum. In this way we can deduce the following equation.
where:
m₁ = mass of the object = 10 [kg]
v₁ = velocity of the object before the impulse = 1 [m/s]
v₂ = velocity of the object after the impulse = 4 [m/s]