Answer:
Explanation:
Students must push harder on the handle when the leads of the generator are connected across the wire with the lowest resistance.
This is because turning the handle at a given constant rate produces a constant voltage across the leads, regardless of what is connected to the leads.
So, when turning the handle at a constant rate, lab students must push harder in case where there is a greater current through the connected wire.
False
Explanation:
A positive magnification means the image is erect compared to the object. Magnifications with values greater than one represent images that are smaller than the object. A magnification of 1 (plus or minus) means that the image is the same size as the object. If m has a magnitude greater than 1 the image is larger than the object, and an m with a magnitude less than 1 means the image is smaller than the object. If the magnification is positive, the image is upright compared to the object; if m is negative, the image is inverted compared to the object.
Given:
At max. flow density,
(a)
→
By substituting the value,
→
(b)
The speed will be:
→
(c)
The density be:
→
Thus the responses above are correct.
Find out more information about density here:
Answer:
a) capacity of the highway section = 4006.4 veh/h
b) The speed at capacity = 25 mph
c) The density when the highway is at one-quarter of its capacity = k = 21.5 veh/mi or 299 veh/mi
Explanation:
q = 50k - 0.156k²
with q in veh/h and k in veh/mi
a) capacity of the highway section
To obtain the capacity of the highway section, we first find the k thay corresponds to the maximum q.
q = 50k - 0.156k²
At maximum flow density, (dq/dk) = 0
(dq/dt) = 50 - 0.312k = 0
k = (50/0.312) = 160.3 ≈ 160 veh/mi
q = 50k - 0.156k²
q = 50(160.3) - 0.156(160.3)²
q = 4006.4 veh/h
b) The speed at the capacity
U = (q/k) = (4006.4/160.3) = 25 mph
c) the density when the highway is at one-quarter of its capacity?
Capacity = 4006.4
One-quarter of the capacity = 1001.6 veh/h
1001.6 = 50k - 0.156k²
0.156k² - 50k + 1001.6 = 0
Solving the quadratic equation
k = 21.5 veh/mi or 299 veh/mi
Hope this Helps!!!
Answer:
The magnitude of the friction force exerted on the box is 2.614 newtons.
Explanation:
Since the box is sliding on a rough horizontal floor, then it is decelerated solely by friction force due to the contact of the box with floor. The free body diagram of the box is presented herein as attachment. The equation of equilbrium for the box is:
(Eq. 1)
Where:
- Kinetic friction force, measured in newtons.
- Mass of the box, measured in kilograms.
- Acceleration experimented by the box, measured in meters per square second.
By applying definitions of weight () and uniform accelerated motion (), we expand the previous expression:
And the magnitude of the friction force exerted on the box is calculated by this formula:
(Eq. 1b)
Where:
- Weight, measured in newtons.
- Gravitational acceleration, measured in meters per square second.
- Initial speed, measured in meters per second.
- Final speed, measured in meters per second.
- Time, measured in seconds.
If we know that , , , and , the magnitud of the kinetic friction force exerted on the box is:
The magnitude of the friction force exerted on the box is 2.614 newtons.
The magnitude of the friction force acting on the box is determined by calculating the box's acceleration, establishing its mass based on its weight information, and applying these values in Newton's second law. The calculated value is 2.62 N.
To determine the magnitude of the friction force, we first have to compute the acceleration of the box. Acceleration (a) can be found using the formula 'final velocity - initial velocity / time'. Since the final velocity is 0 (the box stops), and the initial velocity is 1.37 m/s, and the time is 2.8 s, we get: a = (0 - 1.37) / 2.8 = -0.49 m/s^2. The negative sign indicates deceleration.
Next, we use Newton's second law, which states that the net force acting on an object is equal to its mass times its acceleration. The net force in this case is the frictional force because there is no other force acting on the box in the horizontal direction. However, we do not know the mass of the box, but we do know its weight, and weight = mass x gravitational acceleration (g). So mass = weight/g = 52.4N / 9.8m/s^2 = 5.35 kg.
Lastly, we substitute the mass and deceleration into Newton's second law to find the frictional force (f): f = mass x deceleration = 5.35kg x -0.49m/s^2 = -2.62 N. Again, the negative sign indicates that the force acts opposite to the direction of motion. Thus, the frictional force magnitude is 2.62 N.
#SPJ3
maximum speed of cheetah is
speed of gazelle is given as
Now the relative speed of Cheetah with respect to Gazelle
now the relative distance between Cheetah and Gazelle is given initially as "d"
now the time taken by Cheetah to catch the Gazelle is given as
so by rearranging the terms we can say
so above is the relation between all given variable
Answer:
d = 3.44 x 10⁸ m
Explanation:
The minimum distance required will be the distance from the centre of the earth to a point where gravitational intensity due to both earth and moon becomes equal . Once this point is reached , moon will attract the baseball on its own .
Let this distance be d from the centre of the earth
So GM / d² = G m / ( 3.82 x 10⁸ - d )²
M is mass of the earth , m is mass of the moon
M / m = ( d / 3.82 x 10⁸ - d )²
5.972 x 10²⁴ / 7.34 x 10²² = ( d / 3.82 x 10⁸ - d )²
81.36 = ( d / 3.82 x 10⁸ - d )²
9.02 = d / 3.82 x 10⁸ - d
34.45 x 10⁸ - 9.02 d = d
34.45 x 10⁸ = 10.02 d
d = 3.44 x 10⁸ m
B. friction
C. weather
D. convergence
Answer:
Temperaturereduces the wind speed on earth.
Explanation:
Answer:
your answer would be A. temperature
Explanation:
Wind speed on Earth is reduced by temperature, it depends on the temperature because let's say there is a nice sunny day, then obviously it will reduce the wind speed