A. pOH=13
B. pOH=11.77
C. pOH=8.52
D. pOH=10.52
2. what is the pOH of a solution if the pH is 2.23
A. pOH=1
B. pOH=12
C. pOH=8
D. pOH=9
3. Given a solution of perchloric acid has a concentration of .023M, what is the pH and pOH
A. pH=2.3 and pOH=11.97
B. pH=1.64 and pOH= 12.36
C. pH=4.5 and pOH=9.95
The pH and pOH for a solution are related through the equation pH + pOH = 14. The pOH for solutions with a pH of 2.23 is 11.77, and in a solution of perchloric acid with a concentration of .023M, the pH is 1.64 and pOH is 12.36.
The concept of pOH and pH are related through the equation pH + pOH = 14 at 25 °C. If you have the value of one, you can easily find the other. For your first two questions, the pH of solution is given as 2.23. Therefore, the pOH would be 14 - 2.23 = 11.77. Your answer to both questions 1 and 2 is B. pOH=11.77.
For question 3, the perchloric acid has a concentration of .023M. To find the pH, we calculate -log[H3O+], which gives about 1.64. Therefore, the pOH would be 14 - 1.64 = 12.36. Your answer to question 3 is B. pH=1.64 and pOH=12.36.
#SPJ3
Answer: In calcium chloride there is one calcium atom and two chloride atoms attached to it, it has an ionic bond with chlorine and calcium. A bond is said to be an ionic bond if it is formed by the electrostatic attraction between one negatively charged and one positively charged ions. Ions are the atoms which are formed on the gain or loss of electrons to an atom. All the other molecules have covalent bonds, which forms on sharing of electron pairs.
B. 2Ba (aq)
C. 2Ag (aq)
D. CI(aq)
Answer:
Option C
Explanation:
Consider the ionic equation of this chemical equation. We are given barium chloride and silver nitrate as the reactants, and silver chloride and barium nitrate as the products. We can thus conclude that the ionic equation ( not balanced yet ) should be as follows -
Ba( 2 + ) + Cl ( - ) + Ag ( + ) + NO3 ( - ) ------> AgCl + Ba( 2 + ) + NO3( - )
As you can see these compounds are present in aqueous solutions, and are thus dissociated.
______________________________________________________
Now let us take a look at the number of elements on the reactant and product sides, and balance this chemical equation out -
Ba( 2 + ) + 2Cl ( - ) + 2Ag ( + ) + 2NO3 ( - ) ------> 2AgCl + Ba( 2 + ) + 2NO3( - )
Solution = Option C!
Answer:
ΔH°rxn = 54.08 kJ
Explanation:
Let's consider the following equations.
a) ClO(g) + O₃(g) ⇄ Cl(g) + 2 O₂(g) ΔH°rxn = –29.90 kJ
b) 2 O₃(g) ⇄ 3 O₂(g) ΔH°rxn = 24.18 kJ
We have to determine the value of heat of reaction for the following reaction: Cl(g) + O₃(g) ⇄ ClO(g) + O₂(g)
According to Hess's law, the enthalpy change in a chemical reaction is the same whether the reaction takes place in one or in several steps. That means that we can find the enthalpy of a reaction by adding the corresponding steps and adding their enthalpies. According to Lavoisier-Laplace's law, if we reverse a reaction, we also have to reverse the sign of its enthalpy.
Let's reverse equation a) and add it to equation b).
-a) Cl(g) + 2 O₂(g) ⇄ ClO(g) + O₃(g) ΔH°rxn = 29.90 kJ
b) 2 O₃(g) ⇄ 3 O₂(g) ΔH°rxn = 24.18 kJ
-------------------------------------------------------------------------------------------------
Cl(g) + 2 O₂(g) + 2 O₃(g) ⇄ ClO(g) + O₃(g) + 3 O₂(g)
Cl(g) + O₃(g) ⇄ ClO(g) +O₂(g)
ΔH°rxn = 29.90 kJ + 24.18 kJ = 54.08 kJ
The heat of the reaction (ΔH°rxn) for the reaction Cl(g) + O3(g) ? ClO(g) + O2(g) is calculated using Hess's Law. The sum of the heat of reversed first reaction and the second reaction provided is 54.08 kJ.
The chemistry question asks to determine the heat of the reaction for the reaction Cl(g) + O3(g) ? ClO(g) + O2(g). In Hess's Law, the heat of the reaction or ΔH for a reaction can be calculated from the sum of the heats of other reactions that sum to the desired reaction. In this case, we want to reverse the first reaction provided (which changes the sign of ΔH) and add it to the second reaction provided.
So, reversing the first reaction we get: Cl(g) + 2 O2(g) ? ClO(g) + O3(g) ?H°rxn = 29.90 kJ
Adding this to the second reaction: 2 O3(g) ? 3 O2(g), ?H°rxn = 24.18 kJ, gives the reaction Cl(g) + O3(g) ? ClO(g) + O2(g). Adding the ΔH values gives the ΔH for this reaction: 29.90 kJ + 24.18 kJ = 54.08 kJ. So, ?H°rxn for the reaction Cl(g) + O3(g) ? ClO(g) + O2(g) is 54.08 kJ.
#SPJ11
Answer : The mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Explanation : Given,
Mass of oxygen in sulfur dioxide = 3.49 g
Mass of sulfur in sulfur dioxide = 3.50 g
Mass of oxygen in sulfur trioxide = 9.00 g
Mass of sulfur in sulfur trioxide = 6.00 g
Now we have to calculate the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide.
Mass of oxygen per gram of sulfur for sulfur dioxide =
Mass of oxygen per gram of sulfur for sulfur dioxide =
and,
Mass of oxygen per gram of sulfur for sulfur trioxide =
Mass of oxygen per gram of sulfur for sulfur trioxide =
Thus, the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.