The electric field at the distance of 3.5 meters from an infinite wall of charges is 125 N/C. What is the magnitude of the electric field 1.5 meters from the wall?

Answers

Answer 1
Answer:

Explanation:

It is given that,

Distance, r = 3.5 m

Electric field due to an infinite wall of charges, E = 125 N/C

We need to find the electric field 1.5 meters from the wall, r' = 1.5 m. Let it is equal to E'. For an infinite wall of charge the electric field is given by :

E=(\lambda)/(2\pi \epsilon_o r)

It is clear that the electric field is inversely proportional to the distance. So,

(E)/(E')=(r')/(r)

E'=(Er)/(r')

E'=(125* 3.5)/(1.5)  

E' = 291.67 N/C

So, the magnitude of the electric field 1.5 meters from the wall is 291.67 N/C. Hence, this is the required solution.


Related Questions

A bicycle racer is going downhill at 11.0 m/s when, to his horror, one of his 2.25 kg wheels comes off when he is 75.0 m above the foot of the hill. We can model the wheel as a thin-walled cylinder 85.0 cm in diameter and neglect the small mass of the spokes. (a) How fast is the wheel moving when it reaches the bottom of hill if it rolled without slipping all the way down? (b) How much total kinetic energy does it have when it reaches bottom of hill?
We often refer to the electricity at a typical household outlet as being 120 V. In fact, the voltage of this AC source varies; the 120 V is __________. We often refer to the electricity at a typical household outlet as being 120 V. In fact, the voltage of this AC source varies; the 120 V is __________. the minimum value of the voltage the peak value of the voltage the average value of the voltage the rms value of the voltage
Which of the following is a good example of a contact force?ОА.Earth revolving around the SunOB.a bridge suspended by cablesOC.a ball falling downward a few seconds after being thrown upwardOD. electrically charged hairs on your head repelling each other and standing up
The knot at the junction is in equilibrium under the influence of four forces acting on it. The F force acts from above on the left at an angle of α with the horizontal. The 5.7 N force acts from above on the right at an angle of 50◦ with the horizontal. The 6.2 N force acts from below on the right at an angle of 44◦ with the horizontal. The 6.7 N force acts from below on the left at an angle of 43◦ with the horizontal.1. What is the magnitude of the force F?2. What is the angle a of the force F in the figure above?
An electron experiences a magnetic force of magnitude 4.60 x 10^-15 N when moving at an angle of 60.0° with respect to a magnetic field of magnitude 3.50 x 10^-3 T. Find the speed of the electron.

Go to his profile and roast the mess out of him plzz 403665fl 50 points

Answers

Answer:

ok

Explanation:

The uniform crate has a mass of 50 kg and rests on the cart having an inclined surface. Determine the smallest acceleration that will cause the crate either to tip or slip relative to the cart. What is the magnitude of this acceleration

Answers

Answer:

The answer is below

Explanation:

Let g = acceleration due to gravity = 9.81 m/s², x = half of the width of the crate, half of the height of the crate  = 0.5 m, a = acceleration of crate, N = force raising the crate

The sum of moment is given as:

50asin(15)x+50acos(15)0.5=-50(9.81)sin(15)0.5+50(9.81)cos(15)x\ \ \ (1)

Sum of vertical forces is zero, hence:

N-50(9.81)cos(15)+50acos(15)=0\ \ \ (2)

Sum of horizontal force is zero, hence:

50(9.81)sin(15)-\mu N+50acos(15)=0\n\n50(9.81)sin(15)-0.5 N+50acos(15)=0\ \ \ (3)

Solving equation 1, 2 and 3 simultaneously gives :

N = 447.8 N, a = 2.01 m/s², x = 0.25 m

x is supposed to be 0.3 m (0.6/2)

The crate would slip because x <0.3 m

What is suedo force.​

Answers

What is pseudo force?

A pseudo force, also called a fictitious force or an inertial force, is an apparent force that acts on all bodies whose motion is described using a non-inertial frame of reference, such as a rotating reference frame.

A turntable with a rotational inertia of 0.0120 kg∙m2 rotates freely at 2.00 rad/s. A circular disk of mass 200 g and radius 30.0 cm, and initially not rotating, slips down a spindle and lands on the turntable. (a) Find the new angular velocity. (b) What is the change in kinetic energy?

Answers

To solve this problem it is necessary to apply the related concepts to the moment of inertia in a disk, the conservation of angular momentum and the kinematic energy equations for rotational movement.

PART A) By definition we know that the moment of inertia of a disk is given by the equation

I = (1)/(2) MR^2

Where

M = Mass of the disk

R = Radius

Replacing with our values we have

I = (1)/(2) (0.2)(0.3)^2

I = 9*10^(-3)kg\cdot m^2

The initial angular momentum then will be given as

I = I_1 \omega_1

I = 0.012*2

I = 0.024kg\cdot m^2/s

Therefore the total moment of inertia of the table and the disc will be

I_2 = 9*10^(-3)+0.012

I_2 = 0.021kg\cdot m^2

The angular velocity at the end point will be given through the conservation of the angular momentum for which it is understood that the proportion of inertia and angular velocity must be preserved. So

I_1 \omega_1 = I_2\omega_2

(0.012)(2)=(1.08*10^(-4))\omega_2

\omega_2 = (0.012*2)/(0.021)

\omega_2 = 1.15rad/s

Therefore the new angular velocity is 1.15rad/s

PART B) Through the conservation of rotational kinetic energy we can identify that its total change is subject to

\Delta KE = (1)/(2)I_1\omega_1^2-(1)/(2)I_2\omega^2

\Delta KE = (1)/(2)(I_1\omega_1^2-I_2\omega^2)

\Delta KE = (1)/(2)(0.024*2^2-0.021*1.15^2)

\Delta KE = 0.034J

Therefore the change in kinetic energy is 0.034J

A bicycle wheel of radius 0.70 m is rolling without slipping on a horizontal surface with an angular speed of 2.0 rev/s when the cyclist begins to uniformly apply the brakes. the bicycle stops in 5.0 s. how far did the bicycle travel during the 5.0 seconds of braking?

Answers

Distance traveled by the bicycle during the 5 seconds of braking is 22m

Explanation:

initial angular velocity= 2 rev/s

final angular velocity= 0 rev/s

Angular displacement Ф=((wi+wf)/(2) )t

Ф=((0+2)/(2) )5=5 rev

so the distance travelled= 5(2πr)

distance=5(2π*0.7)

distance=22m

The bicycle traveled about 22 m during the 5.0 seconds of braking

\texttt{ }

Further explanation

Centripetal Acceleration can be formulated as follows:

\large {\boxed {a = \frac{ v^2 } { R } }

a = Centripetal Acceleration ( m/s² )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

\texttt{ }

Centripetal Force can be formulated as follows:

\large {\boxed {F = m \frac{ v^2 } { R } }

F = Centripetal Force ( m/s² )

m = mass of Particle ( kg )

v = Tangential Speed of Particle ( m/s )

R = Radius of Circular Motion ( m )

Let us now tackle the problem !

\texttt{ }

Given:

radius of wheel = R = 0.70 m

initial angular speed = ω = 2.0 rev/s = 4π rad/s

final angular speed = ωo = 0 rad/s

time taken = t = 5.0 s

Asked:

distance covered = d = ?

Solution:

d = \theta R

d = (\omega + \omega_o)(1)/(2)t R

d = ( 4 \pi + 0 ) (1)/(2)(5.0)( 0.70 )

d = 4\pi (1.75)

d = 7\pi \texttt{ m}

d \approx 22 \texttt{ m}

\texttt{ }

Learn more

\texttt{ }

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

A 50.0-g hard-boiled egg moves on the end of a spring with force constant k = 25.0 N/m. It is released with an amplitude 0.300 m. A damping force F_x = -bv acts on the egg. After it oscillates for 5.00 s, the amplitude of the motion has decreased to 0.100 m.Calculate the magnitude of the damping coefficient b.Express the magnitude of the damping coefficient numerically in kilograms per second, to three significant figures.

Answers

Answer

given,

mass of the boiled egg = 50 g = 0.05 Kg

spring constant, k = 25 N/m

initial Amplitude, A₁ = 0.3 m

final amplitude, A₂ = 0.1 m

time, t = 5 s

considering the amplitude of damped harmonic oscillation to calculate damping factor.

A_2 = A_1 e^{-((b)/(2m))t}

b is the damping factor and t is the time.

e^{-((b)/(2m))t}=(A_2)/(A_1)

on solving

b= (2m)/(t)ln((A_1)/(A_2))

inserting all the given values

b= (2* 0.05)/(5)ln((0.3)/(0.1))

        b = 0.0219 Kg/s

damping coefficient in three significant figure

        b = 0.022 Kg/s