Answer:
V(peak voltage) is the highest voltage that the waveform will ever attain and the Vrms(root-mean-square) is the effective voltage of the total waveform representing the AC source.
Answer:
a) 8.99*10³ V b) 4.5*10⁻² J c) 0 d) 0
Explanation:
a)
b)
c)
d)
Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is
For N = 1
We need to calculate the current
Using formula of current
Put the value of emf
Now, if the number of turn is 22 , then induced emf would be
Then the current would be
Hence, The current would be same in both situation.
Answers:
a) 222.22 m/s
b) 800.00 km/h
Explanation:
The speed of a wave is given by the following equation:
Where:
is the speed
is the frequency, which has an inverse relation with the period
is the wavelength
Solving with the given units:
This is the speed of the wave in km/h
Transforming this speed to m/s:
This is the speed of the wave in m/s
The gravitational force minus any contact forces acting on an object
The difference between the normal force and the gravitational force acting on an object
The sum of all the forces acting on an object in the same direction
The sum of all forces acting on an object in the same direction is described for the net force acting on an object.
Example : If two forces (2 kids pushing in the same direction to move the object big box) act on an object (big box) in the same direction, then the net force is equal to the sum of the two forces. If the kids pushed in the opposite direction, the net force will not occur.
Hence, Option D is the correct answer.
Learn more about Net force,
#SPJ6
Answer:
The sum of all the forces acting on an object in the same direction.
b) Calculate the flow speed in the bathroom.
c) What is algebraic expression for the pressure in the bathroom?
d) Calculate the water pressure in the bathroom. Report your answer in the (atm) unit.
Answer:
A) A₁ V₁ = A₂V₂
B) V₂ = 19 m /s
C) P₁ + (1/2)ρv₁² = P₂ + (1/2)ρv₂² + (h₂ - h₁ )ρg
D) P₂ = 1.88 atm
Explanation:
A) From the piaget's theory of conservation of volume, we can calculate the rate of flow of water from;
A₁ V₁ = A₂V₂
Where;
A₁ and A₂ are area of cross section V₁ and V₂ are velocity of flow at two places along pipe.
B) Using the formula given in A above, we obtain;
π x 1.2² x 4.75 = π x 0.6² x V₂
V₂ x 0.36 = 6.84
V₂ = 6.84/0.36
V₂ = 19 m /s
c ) To find pressure we shall apply Bernoulli's theorem in fluid dynamics;
P₁ + (1/2)ρv₁² = P₂ + (1/2)ρv₂² + (h₂ - h₁ )ρg
Where;
P₁ and P₂ are pressure at ground and second floor respectively
v₁ and v₂ are velocity at ground and second floor respectively
h₁ and h₂ are height at ground and second floor respectively ρ is density of water.
Thus, plugging in the relevant values to obtain;
4.1 x 10⁵ + (1/2 x 1000 x 4.75²) = P₂ + (1/2 x 1000 x 19²) + (5.2 x 1000 x 9.8)
(4.1 x 10⁵) + (0.11 x 10⁵) = P₂ + (1.8 X 10⁵) + (0.51 X 10
P₂ = 1.9 X 10⁵ N/m² = 1.88 atm
Answer:
Explanation:
Let T and U represent the tensions in the 41° and 63° cables, respectively. In order for the system to be stationary, the horizontal components of these tensions must balance, and the vertical components of these tensions must total 200 N.
Tcos(41°) =Ucos(63°) . . . . . balance of horizontal components
U = Tcos(41°)/cos(63°) . . . . write an expression for U
__
The vertical components must total 200 N, so we have ....
Tsin(41°) +Usin(63°) = 200
Tsin(41°) +Tcos(41°)sin(63°)/cos(63°) = 200
T(sin(41°)cos(63°) +cos(41°)sin(63°))/cos(63°) = 200
T = 200cos(63°)/sin(41° +63°) ≈ 93.6 . . . newtons
U = 200cos(41°)/sin(41° +63°) ≈ 155.6 . . . newtons
__
The vertical cable must have sufficient tension to balance the weight of the traffic light, so its tension is 200 N.
Then the tensions in the 3 cables are ...
41°: 93.6 N
63°: 155.6 N
90°: 200 N
The tension in each of the three cables are 94.29, 155.56 and 200 Newton respectively.
Given the following data:
First of all, we would determine the third tension force based on the vertical component as follows:
Next, we would apply Lami's theorem to resolve the forces acting on the traffic light at equilibrium:
For the horizontal component:
....equation 1.
For the vertical component:
...equation 2.
Substituting eqn. 1 into eqn. 2, we have:
For the first tension:
Read more on tension here: brainly.com/question/4080400