Answer:
False
Explanation:
Sun mass is dominating in Solar system as compared to other planets, asteroids and comets. Sun itself accounting for the 99.9% of the mass of the solar system. Hence the gravitational force exerted by the Sun dominates the other objects in the solar system. So we can conclude that solar system has non-uniform composition. The given statement is false
Answer:
Yes, the paths of the two particles cross.
Location of path intersection = ( 1 , 2 , 3)
Explanation:
In order to find the point of intersection, we need to set both locations equal to one another. It should be noted however, that the time for each particle can vary as we are finding the point where the paths meet, not the point where the particles meet themselves.
So, we can name the time of the first particle , and the time of the second particle .
Setting the locations equal, we get the following equations to solve for and :
Equation 1
Equation 2
Equation 3
Solving these three equations simultaneously we get:
2 seconds
4 seconds
Since, we have an answer for when the trajectories cross, we know for a fact that they indeed do cross.
The point of crossing can be found by using the value of or in the location matrices. Doing this for the first particle we get:
Location of path intersection = ( -1 + 2 , 4 - 2 , -1 + 2(2) )
Location of path intersection = ( 1 , 2 , 3)
You should obtain e/m = 2V/(B^2)(r^2)
3. The magnetic field on the axis of a circular current loop a distance z away is given by
B = mu I R^2 / 2(R^2 + z^2)^ (3/2)
where R is the radius of the loops and I is the current. Using this result , calculate the magnetic field at the midpoint along the axis between the centers of the two current loops that make up the Helmholtz coils, in terms of their number of turns N, current I, and raidus R.Helmholtz coils are separated by a distance equal to their raidus R. You should obtain:
|B| = (4/5)^(3/2) *mu *NI/R = 9.0 x 10^-7 NI/R
where B is magnetic field in tesla, I is in current in amps, N is number of turns in each coil, and R is the radius of the coils in meters
Answer:
Explanation:
Magnetic field creates a force perpendicular to a moving charge in its field which is equal to Bev where B is magnetic field , e is amount of charge on the moving charge and v is the velocity of charge particle .
This force provides centripetal force for creation of circular motion. If r be the radius of the circular path
Bev = mv² / r
r = mv / Be
2 ) If an electron is accelerated by an electric field created by potential difference V then electric field
= V / d where d is distance between two points having potential difference v .
force on charged particle
electric field x charge
= V /d x e
work done by field
= force x distance
= V /d x e x d
V e
This is equal to kinetic energy created
V e = 1/2 mv²
= 1/2 m (r²B²e² / m² )
V = r²B²e/ 2 m
e / m = 2 V/ r²B²
3 )
B =
In Helmholtz coils , distance between coil is equal to R so Z = R/2
B =
For N turns of coil and total field due to two coils
B =
=
= 9.0 x 10^-7 NI/R
Answer:
Explanation:
given,
time taken to complete the each orbit = 144 minutes
t = 144 x 60 = 8640 s
mass of the earth = 5.98 x 10²⁴ Kg
radius of earth,R = 6.38 x 10⁶ m
Using Kepler's 3rd law
r = 9.1 x 10⁶ m
the altitude of the satellite
H = r - R
H = 9.1 x 10⁶ - 6.38 x 10⁶
H = 2.72 x 10⁶ m
ANSWER:
D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures
STEP-BY-STEP EXPLANATION:
One of the main reasons fusion power cannot be harnessed is that its power requirements are incredibly high. For fusion to occur, a temperature of at least 100,000,000°C is needed.
Therefore, the correct answer is D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures