A ballon has a volume of 5.6L at 25C and it is placed into liquid nitrogen at a temp of -78c. what is the volume of the ballon

Answers

Answer 1
Answer:

Answer:

3.7L

Explanation:

Given parameters:

Initial volume  = 5.6L

Initial temperature  = 25°C = 273 + 25 = 298K

Final temperature = -78°C = 273 + (-78) = 195K

Unknown:

New volume of the balloon = ?

Solution:

We are going to assume that the pressure is constant and then we apply the charles's law;

  "the volume of fixed mass of a gas varies directly as its absolute temperature if its pressure is constant"

 mathematically;

         (V_(1) )/(T_(1) )   = (V_(2) )/(T_(2) )

Where V and T are temperature

            1 and 2 are initial and final states

Insert the parameters and solve;

       (5.6)/(298)  = (V_(2) )/(195)

      298V₂  = 1092

              V₂  = 3.7L


Related Questions

What is the correct noble gas configuration for oxygen?
Which of the following changes is observed when we move across the row from left to right in the periodic table?
Classify each type of matter as an element, a compound, a heterogeneous mixture, or a homogeneous mixture. drag each item to the appropriate bin. sugar air hot tea salt water
Which statements correctly describe the decay rates of radioactive isotopes? a} It takes two half-lives for a sample to fully decay. b} The exact time when an individual atom will decay can be accurately predicted. c} After each half-life, the amount of radioactive material is reduced by half. d) All radioactive isotopes have the same half-life. e} The decay of individual atoms in a sample of radioactive material is random.
Given these reactions, X ( s ) + 1 2 O 2 ( g ) ⟶ XO ( s ) Δ H = − 668.5 k J / m o l XCO 3 ( s ) ⟶ XO ( s ) + CO 2 ( g ) Δ H = + 384.3 k J / m o l what is Δ H for this reaction? X ( s ) + 1 2 O 2 ( g ) + CO 2 ( g ) ⟶ XCO 3 ( s )

In basic enzyme kinetics, a large Km indicates that the substrate binds A. Permanently B. Transiently C. Covalently D. with low specificity E. Weakly

Answers

Answer: D

Explanation:

Km value is a signature of the enzyme. It is the characteristic feature of a particular enzymes for a specific substrate. Km denotes the affinity of the enzyme for substrate. The lesser the numerical value of Km, the affinity of the enzyme for the substrate is more.

In the velocity x substrate graph in a fixed quantity if enzyme. As substrate concentration is increase, the velocity is also increasing at the initial phase but the curve fatten afterwards. This is because as more substrate is added, all enzymes molecules become saturated. Further increase in substrate cannot make any effect in the reaction velocity.

The maximum velocity is called Vmax. Km is the concentration of substrate that Vmax is half.

The larger the numerical value of Km, the lesser the enzyme binds the substrate

Devise a detailed experimental procedure to purify ~ 20 grams of benzoic acid that is contaminated with sodium chloride. Justification of the steps (including solubility calculations) that are included in the procedure. In other words, explain why the steps are being included.

Answers

Answer:

Based on the difference in solubility one can perform the process of purification of the benzoic acid contaminated with sodium chloride. The benzoic acid does not get soluble in cold water, while the sodium chloride is soluble in cold water.  

Thus, for separation, the supplementation of cold water can be done into the mixture in the experiment of purifying benzoic acid from sodium chloride. In the process, the mixture is placed on the ice bath and is stirred well, in the end, the solution is filtered. The filtrate contains sodium chloride and on the filter paper pure benzoic acid is collected.  

How to prepare ethanoic acid from ethane

Answers

anonymous
anonymous 5 years ago
First you chlorinate it in presence of light.
C2H6 + Cl2 ---hv -> C2H5Cl + HCl
Then you add aqeuos KOH to get C2H5OH
C2H5Cl+KOH-> C2H5OH+ KCl.
Then you add KMnO4 to get the rquired compound.
C2H5OH ----KMnO4 ---> CH3COOH.
C2h6 + O2 ----> CH3CooH

What would be considered more dilute? sweet tea or unsweetened tea

Answers

Answer:

Unsweetened tea

Explanation:

A concentrated solution is a solution that has more of the solute in it than the solvent (water).

A diluted solution is a solution that has more solvent (water) than the solute.

From the above we can say that the sweet tea contains more of the tea than water i.e it is concentrated hence, the taste is sweet. On the other hand, we can say that the unsweetened tea contains more water than the tea i.e it is diluted hence, the unsweetened taste.

Consider an element Z that has two naturally occurring isotopes with the following percent abundances: the isotope with a mass number of 19.0 is 55.0% abundant; the isotope with a mass number of 21.0 is 45.0% abundant. What is the average atomic mass for element Z?Average atomic mass of Z = [mass]

Answers

Answer:

Average atomic mass = 19.9 amu

Explanation:

Isotopes can be defined as two or more forms of a chemical element that are made up of equal numbers of protons and electrons but different numbers of neutrons.

Generally, the isotopes of a chemical element have the same chemical properties because of their atomic number but different physical properties due to their atomic weight (mass number).

Given the following data;

Relative abundance of Z-19 = 55%

Relative abundance of Z-21 = 45%

Atomic mass of Z-19 = 19 amu

Atomic mass of Z-21 = 21 amu

To find the average atomic mass;

Average atomic mass = 19 * (55/100) + 21 * (45/100)

Average atomic mass = 19*0.55 + 21*0.45

Average atomic mass = 10.45 + 9.45

Average atomic mass = 19.9 amu

Therefore, the average atomic mass for element Z is 19.9 amu.

What change would you expect on the rate of the SN2 reaction of 1-iodo-2-methylbutane with cyanide ion if the nucleophile concentration is halved and the alkyl halide concentration is unchanged ?

Answers

Answer:

Rate of reaction will be half of it's initial value

Explanation:

For the given S_(N)2 reaction, the rate law is -

Rate=k[1-iodo-2-methylbutane][CN^(-)]

Where k is rate constant, [1-iodo-2-methylbutane] is concentration of 1-iodo-2-methylbutane and [CN^(-)] is concentration of CN^(-)

Here nucleophile is the CN^(-) ion

Initiallly, (Rate)_(initial)=k* [1-iodo-2-methylbutane]_(initial)* [CN^(-)]_(initial)

When concentration of CN^(-) is halved then-

Rate=k* [1-iodo-2-methylbutane]_(initial)* ([CN^(-)]_(initial))/(2)=((Rate)_(initial))/(2)

So rate of reaction will be half of it's initial value