Answer:
0.1066 hours
Explanation:
A common pesticide degrades in a first-order process with a rate constant (k) of 6.5 1/hours. We can calculate its half-life (t1/2), that is, the times that it takes for its concentration to be halved, using the following expression.
t1/2 = ln2/k
t1/2 = ln2/6.5 h⁻¹
t1/2 = 0.1066 h
The half-life of the pesticide is 0.1066 hours.
The half-life of the breakdown reaction is 0.1066 h
The half-life of a substance is simply defined as the time taken for half of the original substance to decay.
The half-life of a first order reaction can be obtained by the following equation:
is the half-life
K is the decay constant
With the above formula, we can obtain the half-life of the breakdown reaction as follow:
Rate constant (K) = 6.5 h¯¹
Therefore, the half-life of the breakdown reaction is 0.1066 h
Learn more: brainly.com/question/24286055?referrer=searchResults
Pages
Equivalent weight of the compound
caco3
Answer:
CaCO3,which is Calcium Carbonate. It’s equivalent mass is 50 g. Explanation:-. Mass of CaCO3=Mass of 1 atom of Calcium (Ca)+Mass of 1 atom of Carbon (C)+Mass of 3 atoms of Oxygen (O). Mass of 1 atom of Calcium=1×40g=40g. Mass of 1 atom of Carbon=1×12g=12g. Mass of 3 atoms of Oxygen=3×16g=48g.
Explanation: Hope this helps :)
Answer:
Henderson Hasselbalch equation: pH = pKa + log [salt]/[acid]
You need to know the pKa for acetic acid. Looking it up one finds it to be 4.76
(a). pH = 4.76 + log [0.13]/[0.10]
= 4.76 + 0.11
= 4.87
(b) KOH + CH3COOH =>H2O + CH3COOK so (acid)goes down and (salt)goes up. Assuming no change in volume, you have 0.10 mol acid - 0.02 mol = 0.08 mol acid and 0.13 mol salt + 0.02 mol = 0.15 mol salt
pH = 4.76 + log [0.15]/[0.08]
= 4.76 + 0.27
= 5.03
The pH of the buffer with 0.11 mol acetic acid and 0.13 mol sodium acetate in 1.00 L is 4.91, calculated using the Henderson-Hasselbalch equation. The second part of the question regarding the pH change after the addition of '2' is unanswerable without further information on what is being added.
To answer the question of what the pH of the buffer solution containing 0.11 mol of acetic acid and 0.13 mol of sodium acetate in 1.00 L is, we can apply the Henderson-Hasselbalch equation:
pH = pKa + log([A-]/[HA])
Where [A-] is the concentration of the acetate ion and [HA] is the concentration of acetic acid. For acetic acid, the pKa is approximately 4.76. Since we have 0.11 mol of acetic acid and 0.13 mol of sodium acetate in 1.00 L solution, the concentrations are 0.11 M and 0.13 M respectively.
Substituting these values into the Henderson-Hasselbalch equation gives:
pH = 4.76 + log(0.13/0.11)
Calculating the log(0.13/0.11) yields approximately 0.15. Therefore:
pH = 4.76 + 0.15 = 4.91
The question "What is the pH of the buffer after the addition of 2?" seems to be incomplete, as it does not specify what '2' refers to. If '2' refers to adding 2 moles of a strong acid or base, for instance, the pH would change significantly and the buffer capacity might be exceeded. The exact effect on pH would depend on the nature of the substance added (acid or base) and its quantity. Without specifics, this part of the question cannot be accurately answered.
The concept of buffer capacity is relevant to discuss here. Buffer capacity refers to the amount of acid or base a buffer can absorb without a significant change in pH. Buffer solutions with higher molar concentrations of both the acid and the corresponding salt will have greater buffer capacity.
#SPJ12
a) 158.3 grams
b) 38.64 grams
c) 4.96 grams
d) 16.34 grams
Answer: d) 16.34 grams
Explanation:
To calculate the moles :
The balanced chemical reaction given is:
According to stoichiometry :
As 2 moles of are produced by= 4 moles of
Thus 0.292 moles of are produced by= = of
Mass of
Thus 16.34 g of will be needed
Answer:
General Characteristics of Acids:
Sour taste (though you should never use this characteristic to identify an acid in the lab) Reacts with a metal to form hydrogen gas. Increases the H+ concentration in water. Donates H+ ions. Turns blue litmus indicator red.