Aqueous hydrochloric acid HCl will react with solid sodium hydroxide NaOH to produce aqueous sodium chloride NaCl and liquid water H2O. Suppose 9.84 g of hydrochloric acid is mixed with 3.1 g of sodium hydroxide. Calculate the maximum mass of water that could be produced by the chemical reaction. Round your answer to 2 significant digits.

Answers

Answer 1
Answer:

Answer:

1.4 g H₂O

Explanation:

In a reaction, the reactants are usually not present in exactstoichiometric amounts, that is, in the proportions indicated by the balanced equation. Frequently a large excess of one reactant is supplied to ensure that the more expensive reactant is completely converted to the desired product. Consequently, some reactant will be left over at the end of the reaction. The reactant used up first in a reaction is called the limiting reagent, because the maximum amount of product formed depends on how much of this reactant was originally present. When this reactant is used up, no more product can be formed.


Related Questions

Which description is not a property of a base? (2 points)apH lower than 7bTurns litmus paper bluecBitter tastedSlimy feel
.........................................
“the density of a subtance generally decreases as the temperature increases”
Lewisite (2-chloroethenyldichloroarsine) was once manufactured as a chemical weapon, acting as a lung irritant and a blistering agent. During World War II, British biochemists developed an antidote which came to be known as British anti-Lewisite (BAL) (2,3-disulfanylpropan-1-ol). Today, BAL is used medically to treat toxic metal poisoning. Complete the reaction between Lewisite and BAL by giving the structure of the organic product and indicating the coefficient for the number of moles of HCl produced in the reaction.
Consider the titration of 30 mL of 0.030 M NH3 with 0.025 M HCl. Calculate the pH after the following volumes of titrant have been added: a) 0 mL; b) 10 mL; c) 20 mL; d)35 mL; e) 36 mL; f) 37 mL.

When an ionic compound such as sodium chloride (NaCl) is placed in water, the component atoms of the NaCl crystal dissociate into individual sodium ions (Na⁺) and chloride ions (Cl-). In contrast, the atoms of covalently bonded molecules (e.g. glucose, sucrose, glycerol) do not generally dissociate when placed in aqueous solution. Which of the following solutions would be expected to contain the greatest number of solute particles (molecules or ions)?A) 1 litre of 0.5 M NaClB) 1 litre of 1.0 M NaClC) 1 litre of 1.0 M glucoseD) 1 litre of 1.0 M NaCl and 1 litre of 1.0 M glucose will contain equal numbers of solute particles.

Answers

Answer:

1 litre of 1.0 M NaCl

Explanation:

When an ionic compound dissolves in water, it dissociates into ions. Consider the dissolution of sodium chloride in water;

NaCl(s) ------> Na^+(aq) + Cl^-(aq)

Hence, two solute particles are obtained from each formula unit of NaCl, a greater concentration of NaCl will contain a greater number of sodium an chloride ion particles.

Glucose is a molecular substance and does not dissociate in solution hence it yields a lesser number of particles in solution even at the same concentration as NaCl

Final answer:

The solution with the greatest number of solute particles is 1 litre of 1.0 M NaCl, as ionic compounds dissociate into individual ions, thus providing more particles per litre.

Explanation:

Given the details of the question, the solution that would be expected to contain the greatest number of solute particles would be 1 litre of 1.0 M NaCl. This is because when ionic compounds like sodium chloride are placed in water, they dissociate into individual ions. In the case of NaCl, it splits into two ions, sodium (Na+) and chloride (Cl-). Thus, a 1.0 M solution of NaCl would actually contain 2.0 moles of particles per litre because each formula unit of NaCl gives two particles. Covalently bonded molecules like glucose do not dissociate in solution, therefore, a 1.0 M glucose solution would have 1.0 mole of particles per litre.

Learn more about Solute Particles in Solutions here:

brainly.com/question/24503166

#SPJ3

Which particle is negatively charged?A. proton
B. atom
C. neutron
D. electron

Answers

Answer:

D. electron

Explanation:

Electrons have a negative charge

calculate the amount of heat energy required to heat up 23.2 grams of ice from -21° C to 56° C ** please show your work**

Answers

The second option 1,870.4 Joules

Explain how paper chromatography could be used to separate a mixture of different coloured inks

Answers

The mobile phase is a suitable liquid solvent or mixture of solvents. You probably used paper chromatographyas one of the first things you ever did in chemistry to separate out mixturesof coloured dyes - for example, the dyes which make up a particular ink

I hope that this answer helps you out

Which words or phrases identify the types of temperate climates? Check all that apply. humid continental

highland
it is actually science on the subject but it doesn't have that option.
marine west coast

Mediterranean

subarctic

tropical wet-dry

Answers

Marine west coast and Mediterranean are the types of temperate climates, due to the dispersion of precipitation throughout the year, temperate marine climates are typically distinguished by a notable lack of dry season, hence options D and E are correct.

What is temperate climates?

Temperate climates are regions with moderate annual or seasonal rainfall, intermittent drought, mild to warm summers, and cool to cold winters.

Humid subtropical, marine west coast, Mediterranean are the phrases that clearly identified with temperate marine climates.

Geographically speaking, the moderate climates of Earth are found in the middle latitudes, which are halfway between the tropics and the poles.

Therefore, options D and E are correct.

Learn more about temperate climates, here:

brainly.com/question/12234662

#SPJ2

Answer:

Humid Continental

Marine west coast

Mediterranean

subarctic

Explanation:

just did assignment on edge

What is the density of iron if it crystallizes in a body-centered cubic unit cell with an edge length of 287 pm

Answers

Answer

Density = 7.87g/cm^3

Explanation:

Density is the ratio of mass of the given object to the volume of the object, in this question iron is the given object, then we make use of atomic number of iron

Given:

Length= 287pm = 287*10^-10cm

Atomic mass of Fe= 56.0u

Z=2(for body centered cubic unit cell)

Avogadro number (N 0)=6.022× 10^23

Density= ZM/a^3 × N

Where

Z= body centered cubic unit cell

Then substitute

N= Avogadro's number

a=Length

Density = (2× 56)/(287*10^-10cm)^3 × (6.022 × 10^23)

Density = 7.87g/cm^3

Final answer:

The density of iron in a body-centered cubic unit cell can be calculated using the mass and volume of the unit cell.

Explanation:

The density of iron can be calculated using the formula: density = mass/volume. To determine the mass of the unit cell, we need to know the molar mass of iron and the number of atoms in the unit cell. The molar mass of iron is 55.845 g/mol, and there are two iron atoms in the body-centered cubic unit cell of iron. The volume of the unit cell can be calculated using the formula: volume = (edge length)^3.

Putting these values into the formula, we get:

density = (2 * 55.845 g/mol) / ((287 pm)^3)

Converting the edge length to meters (1 pm = 1e-12 m) and calculating, we find that the density of iron is approximately 7.86 g/cm³.

Learn more about density of iron here:

brainly.com/question/33779549

#SPJ11