A lab group was calculating the speed of a radio car. They measured the distance traveled to be 6 meters and the time to be 3.5 seconds. Then they divided the distance by the time to find the speed. The actual speed was 2.2 m/s. What was their percent error?

Answers

Answer 1
Answer:

A lab group was calculating the speed of a radio car. They measured the distance traveled to be 6 meters and the time to be 3.5 seconds. Then they divided the distance by the time to find the speed. The actual speed was 2.2 m/s. Their percent error is 22.1%.

Percent error is a measure of the difference between an observed value and a true value.

Actual Speed (True Value) = 2.2 m/s

Experimental Speed (Calculated Value) = Distance / Time = 6 m / 3.5 s = 1.714 m/s

The formula for calculating percent error is:

Percent Error = ((|Actual Value - Experimental Value|) / |Actual Value|) * 100%

Calculate the absolute difference between the actual speed and the experimental speed:

|2.2 - 1.714| = 0.486

Calculate the absolute value of the actual speed:

|2.2| = 2.2

Percent Error = (0.486 / 2.2) * 100%

= 0.221 * 100%

= 22.1%

The calculated percent error is approximately 22.1%. This means that the lab group's calculated speed of 1.714 m/s is about 22.1% lower than the true speed of 2.2 m/s.

Percent error is a way to quantify the accuracy of experimental measurements. A positive percent error indicates that the experimental value is higher than the true value, while a negative percent error indicates that the experimental value is lower. In this case, since the calculated speed is lower than the true speed, we have a positive percent error.

To know more about actual speed here

brainly.com/question/13976032

#SPJ3

Answer 2
Answer:

Answer:456

Explanation:


Related Questions

The specific spatial arrangement of amino acid residues that are close to each other in the polypeptide chain is called______the structure of a protein.a. primary.b. secondary.c. tertiary.d. quaternary .
What is the most likely position for the hurricane indicated by the wind readings from the three weather stations shown?
A nitric acid solution flows at a constant rate of 5L/min into a large tank that initially held 200L of a 0.5% nitric acid solution. The solution inside the tank is kept well stirred and flows out of the tank at a rate of 10L/min. If the solution entering the tank is 10% nitric acid, determine the volume of nitric acid in the tank after t minutes.
Consider the reaction, Cl2 + H2S => 2 HCl + S, which is found to be first order in Cl2. Which step of the proposed mechanism must be slow in order to agree with this rate law? Cl2 => 2 Cl Cl + H2S => HCl + HS Cl + HS => HCl + S A. only 3 B. only 2 C. 1 D. Either 2 or 3
The federal limit for cadmium in drinking water is 0.010 mg per liter of solution. What is the molar concentration of a Cd solution that has reached the limit?

Calculate the volume of 8.87×10-2 M calcium hydroxide required to neutralize 15.0 mL of a 0.389 M hydrobromic acid solution. mL

Answers

Answer : The volume of calcium hydroxide is, 32.89 ml

Explanation :

Using neutralization law,

n_1M_1V_1=n_2M_2V_2

where,

n_1 = basicity of an acid = 1

n_2 = acidity of a base = 2

M_1 = concentration of hydrobromic acid = 0.389 M

M_2 = concentration of calcium hydroxide = 0.0887 M

V_1 = volume of hydrobromic acid = 15 ml

V_2 = volume of calcium hydroxide = ?

Now put all the given values in the above law, we get the volume of calcium hydroxide.

1* 0.389M* 15ml=2* 0.0887M* V_2

V_2=32.89ml

Therefore, the volume of calcium hydroxide is, 32.89 ml

Calculate the molarity of each solution.a. 0.38 mol of lino3 in 6.14 l of solution
b. 72.8 g c2h6o in 2.34 l of solution
c. 12.87 mg ki in 112.4 ml of solution

Answers

Q1)
molarity is defined as the number of moles of solute in 1 L solution 
the number of moles of LiNO₃ - 0.38 mol
volume of solution - 6.14 L
since molarity is number of moles in 1 L 
number of moles in 6.14 L - 0.38 mol
therefore number of moles in 1 L - 0.38 mol / 6.14 L = 0.0619 mol/L
molarity of solution is 0.0619 M

Q2)
the mass of C₂H₆O in the solution is 72.8 g
molar mass of C₂H₆O is 46 g/mol 
number of moles = mass present / molar mass of compound
the number of moles of C₂H₆O - 72.8 g / 46 g/mol 
number of C₂H₆O moles - 1.58 mol
volume of solution - 2.34 L
number of moles in 2.34 L - 1.58 mol
therefore number of moles in 1 L - 1.58 mol / 2.34 L = 0.675 M
molarity of C₂H₆O is 0.675 M

Q3)

Mass of KI in solution - 12.87 x 10⁻³ g
molar mass - 166 g/mol
number of mole of KI = mass present / molar mass of KI
number of KI moles = 12.87 x 10⁻³ g / 166 g/mol = 0.0775 x 10⁻³ mol
volume of solution - 112.4 mL 
number of moles of KI in 112.4 mL - 0.0775 x 10⁻³ mol
therefore number of moles in 1000 mL- 0.0775 x 10⁻³ mol / 112.4 mL x 1000 mL
molarity of KI - 6.90 x 10⁻⁴ M

The molarities of the given solutions: (a). 0.38 mol of LiNO₃ in 6.14 L of solution has a molarity of 0.062 M. (b). 72.8 g of C₂H₆O in 2.34 L of solution has a molarity of 0.675 M. (c). 12.87 mg of KI in 112.4 mL of solution has a molarity of 0.000688 M.

To calculate the molarity (M) of a solution, you can use the formula:

Molarity (M) = moles of solute / volume of solution (in liters)

a. 0.38 moles of LiNO₃ in 6.14 L of solution:

Molarity (M) = 0.38 moles / 6.14 L = 0.062 M

b. 72.8 grams of C₂H₆O (ethyl alcohol) in 2.34 L of solution:

First, you need to convert grams to moles using the molar mass of C₂H₆O.

Molar mass of C₂H₆O = 2(12.01 g/mol) + 6(1.01 g/mol) + 1(16.00 g/mol) = 46.08 g/mol

Now, calculate moles of C₂H₆O:

moles = 72.8 g / 46.08 g/mol = 1.58 moles

Molarity (M) = 1.58 moles / 2.34 L = 0.675 M

c. 12.87 mg of KI in 112.4 mL of solution:

First, convert milligrams to grams (1 g = 1000 mg):

12.87 mg = 12.87 g (since 12.87 mg / 1000 = 0.01287 g)

Now, convert mL to liters (1 L = 1000 mL):

112.4 mL = 0.1124 L

Calculate moles of KI:

Molar mass of KI = 39.10 g/mol (for K) + 126.90 g/mol (for I) = 166.00 g/mol

moles = 0.01287 g / 166.00 g/mol = 7.75 × 10⁻⁵ moles

Molarity (M) = (7.75 × 10⁻⁵ moles) / 0.1124 L = 0.000688 M

So, the molarities of the solutions are as follows:

a. 0.062 M

b. 0.675 M

c. 0.000688 M

To know more about moles:

brainly.com/question/34302357

#SPJ3

Temperate deciduous trees lose their leaves in Fall. Explain why trees in temperate rainforest and tropical rainforest don’t lose their leaves. PLEASE HELP!!!!!!!!!!!!! 20 MORE MINUTES UNTIL I HAVE TO HAND THIS INN

Answers

Answer:

So trees in temperate don't lose their leaves because the weather events aren't harsh enough.

Trees in tropical rainforest don't lose their leaves because they are a different type of tree known as evergreens that are green all year round.

Explanation:

Ok so first we'll define some things

Deciduous Trees=  Trees that lose all of their leaves for part of the year.

Trees shed their leaves trees to try and survive harsh weather events.

Temperate deciduous trees lose their leaves in fall to better survive the winter conditions of extreme cold and reduced daylight.

Temperate rainforests = An area that doesn't experience extremely cold or extremely hot temperatures or what we would call harsh weather events.

Broad-leaved trees in tropical rainforests are known evergreen, they are known as this as they are green all year round.

Identify the characteristics that describe how human proteins are assembled. Check all that apply.

Answers

Answer:

Hi,

The assembling of proteins starts with the attachment of m RNA to the ribosomes in the cytoplasm. Each of the ribosome read the code in the m RNA from “start” to “ stop” choosing the specific amino acid building block and removing the unwanted growing protein. The ribosome performs this process in 0.02 seconds and with this rate it is possible for the cell to perform assembling of small protein such as insulin.

Best wishes!

Answer:

A, D, E, F

Explanation:

just took it on edge

Write the expression for the equilibrium constant Kp for the following reaction. Enclose pressures in parentheses and do NOT write the chemical formula as a subscript. For example, enter (PNH3 )2 as (P NH3)2. If either the numerator or denominator is 1, please enter 1 2 MoO3(s) ↔ 2 MoO2(s) + O2(g)

Answers

The expression  for the equilibrium constant Kp for the following reaction is  K_p = (po_2)

Equilibrium constant:

It refers to the ratio of the concentration of products to the concentration of reactants where each raised to the power of their stoichiometric ratios. It is expressed as K.

Since the given expression is

MoO3(s) ↔ 2 MoO2(s) + O2(g)

So, the above expression should be considered for constant kp

Learn more about reaction here; brainly.com/question/24185208

Answer: K_p={(p_(O_2))}

Explanation:

Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as K

K_p is the constant of a certain reaction at equilibrium for gaseous reactants and products.

For the given chemical reaction:

MoO_3(s)\rightleftharpoons 2MoO_2(s)+O_2(g)

The expression of  for above equation follows:

K_p={(p_(O_2))}

As solids do not exert pressure, MoO_3 and MoO_2  are not involved.

The element oxygen has valence electrons

Answers

Answer:

it’s electron configuration is 1s^2 2s^2 2p^4. To determine valence electrons, add the outermost s and p orbitals. In an oxygen atom, 8 electrons are present. Electron present in the first shell (n=1) 2n^2=2 (1)^2=2 (1)=2.