Answer:
The wavelength of that tone in air at standard condition is 0.96 m.
Explanation:
Given that, a trombone can produce pitches ranging from 85 Hz to 660 Hz approximately. We need to find the wavelength of that tone in air when the trombone is producing a 357 Hz tone.
We know that the speed of sound in air is approximately 343 m/s. Speed of a wave is given by :
So, the wavelength of that tone in air at standard condition is 0.96 m. Hence, this is the required solution.
Answer:
Charge,
Explanation:
It is given that,
Electric field strength, E = 180000 N/C
Distance from a small object, r = 2.8 cm = 0.028 m
Electric field at a point is given by :
Q is the charge on an object
So, the charge on the object is . Hence, this is the required solution.
Answer:
The distance and height of the object is 6 m and 2 m.
The image is virtual and upright.
Explanation:
Given that,
Focal length = 0.25 m
Length of image = 0.080 m
Image distance = 0.24 m
We need to calculate the distance of the object
Using formula of lens
Put the value into the formula
We need to calculate the magnification
Using formula of magnification
Put the value into the formula
We need to calculate the height of the object
Using formula of magnification
A convex mirror produce a virtual and upright image behind the mirror.
Hence, The distance and height of the object is 6 m and 2 m.
The image is virtual and upright.
Answer:
Distance of the object = 6 m
Height of the object = 2 m
Explanation:
Thinking process:
Given that,
Focal length = 0.25 m
Length of image = 0.080 m
Image distance = 0.24 m
We need to calculate the distance of the object
Therefore, using formula of lens:
solving, gives u = 6
The magnification is calculated as follows:
m = -0.24/-6
= 0.04
The height = 2 m
The diagram yields an image behind the mirror which is upright.
Answer:
The force must be applied on the axis of rotation
Explanation:
A rotating system conserves its angular momentum only if there are no external torques on the system. In other words, the external torque must be equal to zero.
T=0
T=Fxd
Torque is equal to the vector product of a force by the distance between the axis of rotation and where the force is applied.
For this product to be zero, the force must be applied on the axis of rotation (d=0).
Answer:
v = 4.1 m / s
Explanation:
Velocity is defined by the relation
v =
we perform the derivative
v = 4.1 m / s
Another way to find this magnitude is to see that the velocity on the slope of a graph of h vs t
v =
Δx = v Δdt + x₀
h= 4.1 t + 5.5
v = 4.1 m / s
x₀ = 5.5 m
The Speed of a Particle is 4.1 meters per second.
The position of a particle can be represented by a linear equation of the form h(t) = (at + b) where a and b are constants.
In this case, the equation is h(t) = (4.1t + 5.5).
To find the speed of the particle, we can take the derivative of the position equation with respect to time.
The derivative of h(t) is the rate of change of position with respect to time, which represents the velocity of the particle.
In this case, the derivative is 4.1 meters per second.
Therefore, the speed of the particle is 4.1 meters per second.
Learn more about Speed of a Particle here:
#SPJ3
Answer:
Mass of ion will be
Explanation:
We have given ion is triply charged that is
Radius r = 36 cm = 0.36 m
Velocity of the electron
Magnetic field B = 0.55 T
We know that radius of the path is given by
think the sound frequencies that dogs can
hear compare to the frequencies that humans
can hear?
Dogs can hear sounds at higher frequencies than humans. The range of sound frequencies that dogs can hear is approximately 40 Hz to 60,000 Hz, while the range for humans is 20 Hz to 20,000 Hz. This means that dogs can hear ultrasonic sounds that are beyond the range of human hearing.
In terms of physics, sound is a vibration that travels through a transmission medium like a gas, liquid, or solid as an acoustic wave.
Sound is the reception of these waves and the brain's perception of them in terms of human physiology and psychology. Dogs have the ability to hear ultrasonic sounds that are audible only to them.
Learn more about sound on:
#SPJ1