Answer:
V = 1.69 * 10^6 V
Explanation:
Parameters given:
Electric field, E = 59V/m
Charge, q = 5.40C
We need to first find the distance between the electric charge and the point of consideration to be able to find the Electric potential difference.
Electric field is given as:
E = (kq/r^2)
k = Coulombs constant
=> r^2 = kq/E
=> r^2 = (9 * 10^9 * 5.4) / 59
r^2 = 8.2 * 10^8
r = 2.84 * 10^4 m
We can now find the Electric Potential by using:
V = kq/r
Hence,
V = (9 * 10^9 * 5.4) / (2.84 * 10^4)
V = 1.69 * 10^6 V
Answer:
11405Volt
Explanation:
To solve this problem it is necessary to use the concept related to induced voltage or electromotive force measured in volts. Through this force it is possible to maintain a potential difference between two points in an open circuit or to produce an electric current in a closed circuit.
The equation that allows the calculation of this voltage is given by,
Where
B = Magnetic field
A= Area
N = Number of loops
= Angular velocity
Our values previously given are:
We need convert the angular velocity to international system, then
Applying the equation for emf, we replace the values and we will obtain the value.
Answer:
45 W/m^2
Explanation:
Intensity of light, Io = 90 W/m^2
According to the law of Malus
The average value of Cos^θ is half
So, I = Io/2
I = 90 /2
I = 45 W/m^2
Unpolarized light, when passed through a polarizer, reduces its intensity by half. So, the intensity if the light that emerges from a vertical filter will be 45 W/m².
Given that the incident intensity of the unpolarized light is 90 W/m², when passed through a vertically oriented optical filter, the emerging light will be polarized and will have its intensity halved as it's the property of a polarizing filter to decrease the intensity of unpolarized light by a factor of 2. The formula used in this process is I = Io cos² θ. In the case of unpolarized light passing through a single polarizer, θ is 0. So, the formula simplifies to I = Io/2.
Therefore, the intensity of the light that emerges from the vertically oriented optical filter is: I = 90 W/m² / 2 = 45 W/m².
#SPJ3
Answer:
F0 / 81
Explanation:
Let the two charges by Q and q which are separated by d.
By use of coulomb's law
F0 = k Q q / d^2 ......(1)
Now the charges are decreased by factor of 9.
Q' = Q / 9
q' = q / 9 ......(2)
Now the Force is
F' = k Q' q' / d^2
F' = k (Q /9) (q / 9) / d^2
F' = k Q q / 81d^2
F' = F0 / 81
Answer:149.73 ml
Explanation:
Given
change in volume is given by
The volume of the acetone when it cools to 20.0°C is approximately 142.39 mL.
In order to determine the volume of the acetone when it cools to 20.0°C, we can use the equation for the volume change caused by a temperature change at constant pressure, known as Charles's law. Charles's law states that the volume of a gas is directly proportional to its temperature in Kelvin. We can use the formula V2 = V1 * (T2 / T1) to calculate the volume of the acetone at the lower temperature.
Given that the initial volume of the acetone is 150 mL at a temperature of 34.5°C, we need to convert this temperature to Kelvin by adding 273.15. Therefore, T1 = 34.5°C + 273.15 = 307.65 K.
Since the final temperature is 20.0°C, the final temperature in Kelvin will be T2 = 20.0°C + 273.15 = 293.15 K. We can now plug these values into the equation to find the volume of the acetone at the lower temperature: V2 = 150 mL * (293.15 K / 307.65 K) = 142.39 mL.
#SPJ3
Answer:
0.5 lambda(wavelength)
Explanation:
We know that
The first harmonic for both side open ended pipe is
L= 1/2lambda
So L = 0.5*wavelength