The electric field just above the surface of the charged drum of a photocopying machine has a magnitude E of 2.5 × 105 N/C. What is the surface charge density on the drum, assuming that the drum is a conductor?

Answers

Answer 1
Answer:

Answer:

Charge_(density)=2.2125*10^(-6)C/m^(2)

Explanation:

Given data

Electric Field E=2.5×10⁵ N/C

To find

Charge Density

Solution

From definition of charge density we know that:

Charge Density=Electric field×Permttivity

Where Permttivity ∈₀=8.85×10⁻¹²C²/N.m²

Charge_(density)=(2.5*10^(5)N/C)*(8.85*10^(-12)C^(2)/N.m^(2))\n Charge_(density)=2.2125*10^(-6)C/m^(2)


Related Questions

If the intensity of a loud car horn is 0.005 W/m^2 when you are 2 meters away from the source. Calculate the sound intensity level. A. 1.6 WB. 0.06 WC. 97 dBD. 223 dBE. 179 dB
A boat that travels 3.00 m/s relative to the water is crossing a river that is 1.00 km wide. The destination on the far side of the river is 0.500 km downstream from the starting point. (a) If the river current is 2.00 m/s, in what direction should the boat be pointed in order to reach the destination? (b) How much time will the trip take?
The magnetic flux that passes through one turn of a 11-turn coil of wire changes to 5.60 from 9.69 Wb in a time of 0.0657 s. The average induced current in the coil is 297 A. What is the resistance of the wire?
Two large parallel metal plates are 1.6 cm apart and have charges of equal magnitude but opposite signs on their facing surfaces. Take the potential of the negative plate to be zero. If the potential halfway between the plates is then +3.8 V, what is the electric field in the region between the plates?
Two loudspeakers, A and B, are driven by the same amplifier and emit sinusoidal waves in phase. The frequency of the waves emitted by each speaker is 641Hz . You are standing between the speakers, along the line connecting them and are at a point of constructive interference.How far must you walk toward speaker B to move to reach the first point of destructive interference?Take the speed of sound to be 344 .

Nasa's skylab, the largest spacecraft ever to fall back to the earth, reentered the earth's atmosphere on july 11, 1979, and broke into a myriad of pieces. one of the largest fragments was a 1770-kg, lead-lined film vault, which landed with an estimated speed of 120 m/s.

Answers

All of that is fascinating information.  Thank you for sharing.

A spinning wheel on a fireworks display is initially rotating in a counterclockwise direction. The wheel has an angular acceleration of -4.46 rad/s2. Because of this acceleration, the angular velocity of the wheel changes from its initial value to a final value of -31.4 rad/s. While this change occurs, the angular displacement of the wheel is zero. (Note the similarity to that of a ball being thrown vertically upward, coming to a momentary halt, and then falling downward to its initial position.) Find the time required for the change in the angular velocity to occur.

Answers

Answer:

The time for the change in the angular velocity to occur is 14.08 secs

Explanation:

From the question,

the angular acceleration is - 4.46 rad/s²

Angular acceleration is given by the formula below

\alpha =(\omega -\omega _(o) )/(t - t_(o) )

Where \alpha is the angular acceleration

\omega is the final angular velocity

\omega _(o) is the initial angular velocity

t is the final time

t_(o) is the initial time

From the question

\alpha = - 4.46 rad/s²

\omega _(o) = 0 rad/s (starting from rest)

\omega = -31.4 rad/s

t_(o) = 0 s

Now, we will determine t

From \alpha =(\omega -\omega _(o) )/(t - t_(o) ), then

-4.46 = (-31.4 - 0)/(t - 0)

-4.46 = (-31.4)/(t)

t = (-31.4)/(-4.46)

t = 7.04 secs

This is the time spent in one direction,

Since the angular displacement of the wheel is zero ( it returned to its initial position), then the time required for the change in the angular velocity will be twice this time, that is 2t

Hence,

The time is 2×7.04 secs = 14.08 secs

This is the time for the change in the angular velocity to occur.

11.
A current of 67 amps runs through a resistor of 37 ohms, how much voltage is lost?

Answers

You divide them. 67/37 is 1.5 and so you subtract it with the 67 and multiple it by the coherent integer from the multiplication and you would get 20 volts lost roughly.

Answer: 20 volts

A sheet of aluminum alloy is cold-rolled 33 percent to a thickness of 0.096 in. If the sheet is then cold-rolled to a final thickness of 0.061 in., what is the total percent cold work done

Answers

Answer:

 The total percent cold work done is 36.46%

Explanation:

Let initial metal thickness = T

Final metal thickness = t

The percent cold work done = WC

Then

%Wc = (T - t)/T × 100

% Wc = ( 0.096 - 0.061 )/0.096 ×100

Total %WC = 36.46%

Answer:

The total percent of cold work is 57.34%

Explanation:

Let x the initial thickness of the sheet. After 33% of cold working, the thickness is 0.096 in. Then:

x - 0.33x = 0.096

x = 0.143 in

the final thickness is equal to 0.061 in. The percent of cold work done is:

percent-of-cold-work=((initial-thickness)-(final-thickness))/(initial-thickness)*100

percent-of-cold-work=(0.143-0.061)/(0.143) *100=57.34%

What are some of the benefits of learned optimism that have been found inresearch?
O
A. Fewer health problems
O
O
B. All of these
C. Making more money
O
D. A lower divorce rate

Answers

The benefits of learned optimism that have been found in research are Fewer health problems, Making more money, and a lower divorce rate. The correct option is B.

Learned optimismhas been associated with numerous benefits in research, including fewer health problems, making more money, and a lower divorce rate. Optimistic people tend to have better physical and mental health, which leads to fewer health problems. Additionally, optimistic people tend to be more successful in their careers and finances, which can lead to higher income and better financial stability. Finally, optimistic people tend to have better relationships, including lower divorce rates, as they are better able to handle conflicts and maintain positive attitudes toward their partners.

In summary, learned optimism has a range of benefitsfor individuals, including better physical and mental health, greater success in work and education, better relationships with others, and improved resilience. These benefits make learned optimism an important skill for individuals to develop in order to lead happier, healthier, and more successful lives.

To learn about  pessimism  click:

brainly.com/question/30880008

#SPJ7

Calculate the final temperature of a mixture of 0.350 kg of ice initially at 218°C and 237 g of water initially at 100.0°C.

Answers

Answer:

115 ⁰C

Explanation:

Step 1: The heat needed to melt the solid at its melting point will come from the warmer water sample. This implies

q_(1) +q_(2) =-q_(3) -----eqution 1

where,

q_(1) is the heat absorbed by the solid at 0⁰C

q_(2) is the heat absorbed by the liquid at 0⁰C

q_(3) the heat lost by the warmer water sample

Important equations to be used in solving this problem

q=m *c*\delta {T}, where -----equation 2

q is heat absorbed/lost

m is mass of the sample

c is specific heat of water, = 4.18 J/0⁰C

\delta {T} is change in temperature

Again,

q=n*\delta {_f_u_s} -------equation 3

where,

q is heat absorbed

n is the number of moles of water

tex]\delta {_f_u_s}[/tex] is the molar heat of fusion of water, = 6.01 kJ/mol

Step 2: calculate how many moles of water you have in the 100.0-g sample

=237g *(1 mole H_(2) O)/(18g) = 13.167 moles of H_(2)O

Step 3: calculate how much heat is needed to allow the sample to go from solid at 218⁰C to liquid at 0⁰C

q_(1) = 13.167 moles *6.01(KJ)/(mole) = 79.13KJ

This means that equation (1) becomes

79.13 KJ + q_(2) = -q_(3)

Step 4: calculate the final temperature of the water

79.13KJ+M_(sample) *C*\delta {T_(sample)} =-M_(water) *C*\delta {T_(water)

Substitute in the values; we will have,

79.13KJ + 237*4.18(J)/(g^(o)C)*(T_(f)-218}) = -350*4.18(J)/(g^(o)C)*(T_(f)-100})

79.13 kJ + 990.66J* (T_(f)-218}) = -1463J*(T_(f)-100})

Convert the joules to kilo-joules to get

79.13 kJ + 0.99066KJ* (T_(f)-218}) = -1.463KJ*(T_(f)-100})

79.13 + 0.99066T_(f) -215.96388= -1.463T_(f)+146.3

collect like terms,

2.45366T_(f) = 283.133

T_(f) = = 115.4 ⁰C

Approximately the final temperature of the mixture is 115 ⁰C