Answer:
Y, X, Z, W
Explanation:
Jerome must put the given models in the order Y, X, Z, W to display the development of atom from the earliest to the most recent one. 'Y' represents 'Thomson's plum pudding model' came in 1904 which was followed by the 'Rutherford's nuclear atomic model' of 1911 as represented by X. This was succeeded by the 'Bohr's electrostatic model' in 1913(as shown in model Z) and lastly, the model W which exemplifies the 'Quantum Mechanical Model' by Edwin Schordinger in 1926. Thus, the correct order is Y, X, Z, W.
Answer:YXZW
Explanation:
Answer:
6.624 x 10^-21 J
Explanation:
The temperature of the ideal gas = 320 K
The average translational energy of an ideal gas is gotten as
=
where
is the average translational energy of the molecules
= Boltzmann constant = 1.38 × 10^-23 m^2 kg s^-2 K^-1
T is the temperature of the gas = 320 K
substituting value, we have
= = 6.624 x 10^-21 J
This Physics problem involves balancing the forces and torques acting on a 3.6-m-long pole. By applying the principles of equilibrium and calculations of torque, we find that 114 N of force is needed to keep the pole in a horizontal position.
This is a physics problem related to the concepts of equilibrium and torque. From the details provided, we know that the pole has a mass of 21 kg and it's 3.6 meters long. The center of gravity (cg) of the pole, since it's uniform, is at the middle, which is at 1.8 m from either end of the pole. We are then told that you are holding the pole 35 centimeters (or 0.35 meters) from its tip.
To keep the pole horizontal in equilibrium, the downward force due to the weight of the pole at its center of mass (which is equal to the mass of the pole times gravity, or 21*9.8 = 205.8 N) needs to be balanced by the sum of the torques produced by the forces you are applying at the end you are holding and the force exerted by the fence post at the other end.
Let the force you apply be F1 and the force the fence post exerts be F2. We have F2 at 0.35 m from one end (the pivot point), and F1 at 3.6 - 0.35 = 3.25 m from the pivot. Given that the torque (t) equals to Force (F) times the distance from the pivot (d), and that the net torque should equal zero in equilibrium, we have:
0.35*F2 = 3.25*F1 (1)
Because the net force should also be zero in equilibrium, we have:
F1 + F2 = 205.8 (2)
Solving these two equations, we'll be able to calculate that the force you must exert to keep the pole motionless in a horizontal position, F1, is approximately 114 N.
#SPJ12
To balance the 3.6m-long, 21 kg pole and keep it horizontally motionless, a force of approximately 114N is required
The subject question is a classic example of Torque problem specific to Physics, which involves the concepts of force, weight, and distance. To keep the pole motionless and horizontally balanced, the force you exert must counterbalance the torque due to the pole's weight. Assuming the pole is uniform, its center of gravity (cg) is at its midpoint, 1.8m from each end. The weight of the pole acts downward at this midpoint, providing a clockwise torque about the point of support, which is the fence post.
This torque is calculated as Torque = r * F = 1.8m (distance from fence post to cg) * Weight of pole = 1.8m * 21kg * 9.8m/s² (gravitational acceleration) = ~370 N.m. As the pole is motionless, the total torque about any point must be zero. Hence, the counter-clockwise torque provided by the force you exert is equal to the clockwise torque due to the weight of the pole. Using the distance from the point of your hold to the fence post (3.25m) we can calculate the force you need to exert: Force = Torque/distance = 370 N.m/3.25m = ~114N.
#SPJ11
resistance not neglected) is 10 sec. The time of
descent of the mass from the same height will be
Answer:
10s
Explanation:
The time to get to the maximum would be the same as the time to get down to the maximum unless somehow gravity’s changes during the duration it goes up to and from maximum height.
Express your answer in micrometers(not in nanometers).
Answer:
1.196 μm
Explanation:
D = Screen distance = 3 m
= Wavelength = 598 m
y = Distance of first-order bright fringe from the center of the central bright fringe = 4.84 mm
d = Slit distance
For first dark fringe
Wavelength of first-order dark fringe observed at this same point on the screen is 1.196 μm
The wavelength of light that will produce the first-order dark fringe at the same point on the screen is the same as the original wavelength of the light, which is 598 nm (0.598 μm).
To find the wavelength of light that will produce the first-order dark fringe at the same point on the screen, we can use the equation dsinθ = nλ, where d is the separation between the slits, θ is the angle of the fringe, n is the order of the fringe, and λ is the wavelength of the light.
In this case, the first-order bright fringe is located at a distance of 4.84 mm from the center of the central bright fringe. Since this is a first-order fringe, n = 1.
Plugging in the values, we have (0.120 mm)(sinθ) = (1)(λ). Rearranging the equation gives sinθ = λ/0.120 mm.
Since the first-order dark fringe is located at the same point as the first-order bright fringe, the angle of the first-order dark fringe can be calculated by taking the sine inverse of λ/0.120 mm.
Finally, to find the wavelength of light that will produce the first-order dark fringe at this point, we can rearrange the equation to solve for λ: λ = (0.120 mm)(sinθ).
Now, substitute the known values into the equation to calculate the wavelength of light:
λ = (0.120 mm)(sinθ) = (0.120 mm)(sin sin^-1(λ/0.120 mm)) = λ.
The wavelength of light that will produce the first-order dark fringe at this point on the screen is the same as the original wavelength of light, which is 598 nm. Converting this value to micrometers, we get 0.598 μm.
#SPJ3
Answer:
Apparent frequency of the bell to the observer is 546.12 Hz
Explanation:
The frequency of train bell (frequency of source) = 505 Hz
The speed of train (observer) = 27.6 m/s
The speed of sound in the air is (velocity of sound) = 339 m/s
The apparent frequency of the bell to the observer is calculated as follows:
Apparent frequency of bell to the observer.
Explanation:
15.556 metres per second