Answer:
the statements, the correct one is A
a downward force of gravity and an upward force exerted by the surface
Explanation:
When the disc is hit, a thrust force is exerted in the direction of movement, at the moment the disc moves this force loses contact and becomes zero.
When the movement is already established there are two main forces: gravity that acts downwards and the reaction force to the support of the disk called normal that acts upwards.
As it is not mentioned that there is friction, this force that opposes the movement is zero.
Analyzing the statements, the correct one is A
Answer:
People can hear sounds at frequencies from about 20 Hz to 20,000 Hz,
20 Hz up to 20,000 Hz
Brain pls
True False It is not possible to measure simultaneously the z position and the z momentum component of a particle exactly.
Answer:
Statement 1) False
Statement 2) False
Statement 3) True
Explanation:
The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is
Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.
Statement 1 is false since measurement of x and y positions has no relation to uncertainty.
Statement 2 is false as both the momentum components can be measured with 100% precision.
Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.
Answer:
Time = 1.61 seconds
Explanation:
Using the equation displacement of a trajectory motion in the y plane
Y = u t sin ů - ½gt²....equation 1 where
Y= vertical displacement =4.1
U = initial velocity = 15m/s
g = acc. Due to gravity = 10m/s
Ů = angle of trajectory = 45
t = time to reach fan on its way down
Sub into equ 1
4.1 = 15t sinů - ½ * 10t²
4.1 = 10.61t - 5t²
Solve using quadratic formula
t =[-B±( -B² -4AC)^½]/2A....equation 2
Where A = 5, B=10.61, C =4.1
Substitute A,B,C into equ2
t = (10.61±5.53)/10
t = 0.508seconds or 1.61seconds
Since it is on its way down t= 1.61 seconds
Answer:
weight is 3.50 x 10^5 N
force is 1.52 * 10^6 N
pressure is 1.25 * 10^5 Pa
Explanation:
given data
Given data
depth = 2.60 m
density = 915 kg/m3
length = 5.00 m
width = 3.00 m
to find out
weight of the olive oil, force of air pressure and the pressure exerted upward
solution
we know density = mass / volume
mass = density* width *length *depth
mass = (915)(3)(5)(2.60)
mass = 3.57 x 10^4 Kg
so weight = mg = 3.57 x 10^4 (9.81) = 3.50 x 10^5 N
weight is 3.50 x 10^5 N
and
we know force = pressure * area
area = 3 *5 = 15 m²
and we know atmospheric Pressure is about 1.01 * 10^5 Pa
so force = 1.01 * 10^5 (15) = 1.52 x 10^6 N
force is 1.52 * 10^6 N
and
we know Fup - Fdown = Weight
so
Fup = 1.52 * 10^6 + 3.50 * 10^5
Fup = 1.87 * 10^6 N
so pressure = Fup / area
pressure = 1.87 * 10^6 / 15
pressure is 1.25 * 10^5 Pa
Answer:
Point motion will eventually stops due to action of g exactly perpendicular...
Explanation:
If ignoring the air resistance, the magnitude of gravitational acceleration is already strong enough to stops the acceleration. As we know that, the spring constant of a bungee spring cord will be F = -k/x, where x is the stretched length and k is the spring constant of bungee cord. If F = ma = w = mg, the g = -m k/x. Now we can clearly see that the value of g remains constant due to the fluctuating length of the cord as the motion progresses back and forth in SHM say from x1 to x2 and x2 to x1.
How much power is needed to lift a 750 kg elephant 14.3 m in 30.0 seconds?
Given Information:
Mass of elephant = m = 750 kg
Height = h = 14.3 m
time = t = 30 seconds
Required Information:
Power needed to lift elephant = P = ?
Answer:
Power needed to lift elephant ≈ 3507 watts
Explanation:
As we know power is given by
P = PE/t
Where PE is the potential energy and t is the time
Potential energy is given by
PE = mgh
Where m is the mass of elephant, g is the gravitational acceleration and h is the height to lift the elephant.
PE = 750*9.81*14.3
PE = 105212.25 Joules
Therefore, the required power to lift the elephant is
P = PE/t
P = 105212.25/30
P ≈ 3507 watts