The conclusions drawn by Ruthford after the experiment are that most of the atom is empty and that the nucleus of the atom is positively charged.
After the discovery of the atom, many scientists sought to understand this element more specifically, especially in relation to its composition. These discoveries were strengthened over time, and Rutherford was the one who established how the atom really is, with a positive charge in the nucleus and an electrosphere around it.
Complete question:
Ernest Rutherford completed his famous gold foil experiment in 1911. In this experiment, alpha particles were fired at a thin sheet of gold foil. He observed that most of the alpha particles passed straight through the gold foil unimpeded, but a small number of alpha particles were deflected. Which of the following conclusions about atomic structure were made from Rutherford’s gold foil experiment?
Most of the atom is empty.
The nucleus is positively charged.
The atom is a massive sphere.
The atom is indivisible.
Learn more about atoms:
#SPJ6
Answer: gold foil. It's in the experiment's name
The half reaction occurring at anode is:
The substance having highest positive potential will always get reduced and will undergo reduction reaction.
Balanced chemical equation:
The half reaction follows:
Oxidation half reaction: , Reduction potential is 0.53V
Reduction half reaction: ( × 2 ), Oxidation potential is +0.954 V
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
Hence, the half reaction occurring at anode is :
Find more information about Reduction potential here:
Answer: The half reaction occurring at anode is
Explanation:
The substance having highest positive potential will always get reduced and will undergo reduction reaction.
For the given chemical equation:
The half reaction follows:
Oxidation half reaction:
Reduction half reaction: ( × 2 )
Oxidation reaction occurs at anode and reduction reaction occurs at cathode.
Hence, the half reaction occurring at anode is
Answer:
Process B : constant pressure condition
Process A : constant volume condition
Explanation:
In case of constant pressure, some of the energy is used to do work on the surrounding to keep pressure constant. Due to this, the total heat energy is less than in case of constant volume. In Case of constant Volume all of heat is available, produced in reaction because no work is done.
If we look at our data,we will find that process B has energy 23.3 KJ which is less than process A, the energy of which is 25.9 KJ. It means Process B is occurred at constant pressure condition and Process A has occurred at constant volume condition
Answer:
Covalent bond or common bond is one of the types of chemical bonds. This connection arises from electronic participation. In fact, atoms that need to receive electrons to achieve stable electron arrangement (noble gas electron arrangement or octagonal arrangement) share electrons in their valence layer with other atoms. In this case, the transfer of electrons from one atom to another does not take place, but only a pair of electrons, called a bonded or shared electron pair, belongs to the nucleus of two atoms.
The net force is positive.
The net force is zero.
The positive force is greater than the negative force.
The negative force is greater than the positive force.
ke this and totum
Save and Exit
Next
S
Answer:
The correct answer is - The net force is zero.
Explanation:
When an object moves on the surface with the same or constant acceleration which means there is no gain or loss of the speed it shows that all the forces of the object are at a point of zero.
If there would be any force applied on the object there must be some change in the velocity or acceleration but in this case there is no loss or gain of speed which means there is the object's net force is zero.
Therefore, option B is correct.
Answer:
(c) CH₂F₂
Explanation:
Hydrogen bonds are weak intermolecular forces. They are the strongest kind of intermolecular forces, although they are weaker than the covalent bonds.
Hydrogen bonds arise from molecules which contain a hydrogen atom which is bonded to one of the most electronegative elements such as N, O or F.
(a) HF, → has H-F bond
(b) CH₃NH₂, → has N-H bond
(c) CH₂F₂, → has no H-F bond ( F- C- F)
(d) HOCH₂CH₂OH, → has O-H bond
Therefore, only CH₂F₂ does not exhibit hydrogen bonding.
Answer:
The reaction releases energy
Explanation:
The products of an exergonic reaction have a lower energy state (Delta-G) compared to the reactants. Therefore there is a negative delta –G between products and reactants after the reactions. This means some energy is lost into the environment usually through light or heat.
Exergonic reactions are characterized by a net release of energy but they still require a small initial energy input to start, referred to as the 'activation energy'. The speed or direction of the reaction is not determined by whether it's exergonic.
In the context of chemical reactions, the true statement for all exergonic reactions is that such reactions result in a net release of energy. However, even exergonic reactions, which are characterized by energy release, require a small initial input of energy to get started. This initial energy demand is referred to as the 'activation energy'. Also, it's important to note that the speed of the reaction or its directionality (whether it proceeds only in a forward direction) are not inherently determined by whether a reaction is exergonic. These aspects depend on other reaction conditions and catalysis.
#SPJ3