Answer:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Explanation:
Hello,
In this case, since the solubility in water is related with the presence of polar bonds in the given molecules we can see that C6H12(OH)2 has the presence two O-H bonds which promote the highest solubility via hydrogen bonds as well as the C6H13OH but in a lower degree as only on O-H bond is present. Next since the bond C-Br in is slightly close to the polar bond C6H13Br rather than the C-C bonds only had by C6H14 we can infer that C6H13Br is more soluble in water than C6H14, therefore the required order is:
C6H14 < C6H13Br < C6H13OH < C6H12(OH)2
Whereas C6H12(OH)2 is the most soluble and C6H14 the least soluble in water.
Best regards.
b. 26.0 g H2SO4 in 200.0 mL solution
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Answer:
a) NaHCO3 = 0.504 M
b) H2SO4 = 1.325 M
c) NaCl = 0.610 M
Explanation:
Step 1: Data given
Moles = mass / molar mass
Molarity = moles / volume
a. 19.5 g NaHCO3 in 460.0 ml solution
Step 1: Data given
Mass NaHCO3 = 19.5 grams
Volume = 460.0 mL = 0.460 L
Molar mass NaHCO3 = 84.0 g/mol
Step 2: Calculate moles NaHCO3
Moles NaHCO3 = 19.5 grams / 84.0 g/mol
Moles NaHCO3 = 0.232 moles
Step 3: Calculate molarity
Molarity = 0.232 moles / 0.460 L
Molarity = 0.504 M
b. 26.0 g H2SO4 in 200.0 mL solution
Step 1: Data given
Mass H2SO4 = 26.0 grams
Volume = 200.0 mL = 0.200 L
Molar mass H2SO4 = 98.08 g/mol
Step 2: Calculate moles H2SO4
Moles H2SO4 = 26.0 grams / 98.08 g/mol
Moles H2SO4 = 0.265 moles
Step 3: Calculate molarity
Molarity = 0.265 moles / 0.200 L
Molarity =1.325 M
c. 15.0 g NaCl dissolved to make 420.0 mL solution
Step 1: Data given
Mass NaCl = 15.0 grams
Volume = 420.0 mL = 0.420 L
Molar mass NaCl = 58.44 g/mol
Step 2: Calculate moles NaCl
Moles NaCl = 15.0 grams / 58.44 g/mol
Moles NaCl = 0.256 moles
Step 3: Calculate molarity
Molarity = 0.256 moles / 0.420 L
Molarity =0.610 M
Pb(NO₃)₂ ⇒limiting reactant
moles PbI₂ = 1.36 x 10⁻³
% yield = 87.72%
Given
Reaction(unbalanced)
Pb(NO₃)₂(s) + NaI(aq) → PbI₂(s) + NaNO₃(aq)
Required
Solution
Balanced equation :
Pb(NO₃)₂(s) + 2NaI(aq) → PbI₂(s) + 2NaNO₃(aq)
mol Pb(NO₃)₂ :
= 0.45 : 331 g/mol
= 1.36 x 10⁻³
mol NaI :
= 250 ml x 0.25 M
= 0.0625
Limiting reactant (mol : coefficient)
Pb(NO₃)₂ : 1.36 x 10⁻³ : 1 = 1.36 x 10⁻³
NaI : 0.0625 : 2 = 0.03125
Pb(NO₃)₂ ⇒limiting reactant(smaller ratio)
moles PbI₂ = moles Pb(NO₃)₂ = 1.36 x 10⁻³(mol ratio 1 : 1)
Mass of PbI₂ :
= mol x MW
= 1.36 x 10⁻³ x 461,01 g/mol
= 0.627 g
% yield = 0.55/0.627 x 100% = 87.72%
Answer:
0.41 M
Explanation:
A -> B
rate constant (k) = 0.039L/mol s
t = 23
Final concentration, [A] = 0.30M
Initial concentration, [A]o = x
1 / [A] = kt + 1 / [A]o
1 / [A]o = 1 / [A] - kt
1 / [A]o = 1 / 0.30 - 0.039 (23)
1 / [A] = 3.33 - 0.897 = 2.433
[A] = 0.41 M
Decomposition
Combustion
Single Replacement
Answer:
Decomposition= one-reactant
Combustion= 2-reactants
Single displacement= 2-reactant
Explanation:
Explanation:
Colloidal solutions, or colloidal suspensions, are nothing but a mixture in which the substances are regularly suspended in a fluid. ... Colloidal systems can occur in any of the three key states of matter gas, liquid or solid. However, a colloidal solution usually refers to a liquid concoction.
Answer:
Colloidal solutions, or colloidal suspensions, are nothing but a mixture in which the substances are regularly suspended in a fluid.