Answer: The value of is
Explanation:
We are given:
Initial moles of ammonia = 0.0120 moles
Initial moles of oxygen gas = 0.0170 moles
Volume of the container = 1.00 L
Concentration of a substance is calculated by:
So, concentration of ammonia =
Concentration of oxygen gas =
The given chemical equation follows:
Initial: 0.0120 0.0170
At eqllm: 0.0120-4x 0.0170-3x 2x 6x
We are given:
Equilibrium concentration of nitrogen gas =
Evaluating the value of 'x', we get:
Now, equilibrium concentration of ammonia =
Equilibrium concentration of oxygen gas =
Equilibrium concentration of water =
The expression of for the above reaction follows:
Putting values in above expression, we get:
Hence, the value of is
Answer:
Product A and B : (2R,3S)-2,3-diethyloxirane and (2S,3R)-2,3-diethyloxirane.
Explanation:
A double bond is converted to an oxirane through oxidation by peracids e.g. mCPBA (meta-chloroperoxybenzoic acid).
Epoxidation can occur at both face of double bond result in formation of two stereoisomers.
Product A and B : (2R,3S)-2,3-diethyloxirane and (2S,3R)-2,3-diethyloxirane
Both A and B contain plane of symmetry. Hence, both the products are achiral. So, they do not rotate the plane of polarization of plane polarized light.
Answer:
A. 1 J=1kg•m^2/s^2
Explanation:
Energy refers to the capacity to do work. According to the International System of units (SI units), energy is measured in Joules.
Energy is represented by the force applied over a distance. Force is measured in Newton (N) and distance in metres (m). Hence, energy is Newton × metre (N.m)
Newton is derived from the SI units of mass (Kilograms), and acceleration (metres per seconds^2) i.e Kg.m/s^2, since Force = mass × acceleration.
Since; Energy = Newton × metres
If Newton = Kg.m/s^2 and metres = m
Energy (J) will therefore be; Kg.m/s^2 × m
1J = Kg.m^2/s^2
step.
B. The enthalpy is determined from the enthalpy of similar reactions.
C. The enthalpy from the final equation in a series of reactions is
used
D. Intermediate equations with known enthalpies are added together.
Hess's law is used to measure the enthalpy of a desired chemical reaction because: D. Intermediate equations with known enthalpies are added together.
Hess's Law is also known as Hess's law of constant heat summation (enthalpy) and it was named after a Swiss-born Russian chemist called Germain Hess.
Hess's Law states that the energy change (enthalpy) experienced in a desired chemical reaction is equal to the sum of the energy changes (enthalpies) in each chemical reactions that it is made up of or contains.
Read more on Hess's Law here: brainly.com/question/9328637
Answer:
Mass PbI2 = 18.19 grams
Explanation:
Step 1: Data given
Volume solution = 99.8 mL = 0.0998 L
mass % KI = 12.0 %
Density = 1.093 g/mL
Volume of the other solution = 96.7 mL = 0.967 L
mass % of Pb(NO3)2 = 14.0 %
Density = 1.134 g/mL
Step 2: The balanced equation
Pb(NO3)2(aq) + 2 KI(aq) ⇆ PbI2(s) + 2 KNO3(aq)
Step 3: Calculate mass
Mass = density * volume
Mass KI solution = 1.093 g/mL * 99.8 mL
Mass KI solution = 109.08 grams
Mass KI solution = 109.08 grams *0.12 = 13.09 grams
Mass of Pb(NO3)2 solution = 1.134 g/mL * 96.7 mL
Mass of Pb(NO3)2 solution = 109.66 grams
Mass of Pb(NO3)2 solution = 109.66 grams * 0.14 = 15.35 grams
Step 4: Calculate moles
Moles = mass / molar mass
Moles KI = 13.09 grams / 166.0 g/mol
Moles KI = 0.0789 moles
Moles Pb(NO3)2 = 15.35 grams / 331.2 g/mol
Moles Pb(NO3)2 = 0.0463 moles
Step 5: Calculate the limiting reactant
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
Ki is the limiting reactant. It will completely be consumed ( 0.0789 moles). Pb(NO3)2 is in excess. There will react 0.0789/2 = 0.03945 moles. There will remain 0.0463 - 0.03945 = 0.00685 moles
Step 6: Calculate moles PbI2
For 1 mol Pb(NO3)2 we need 2 moles KI to produce 1 mol PbI2 and 2 moles KNO3
For 0.0789 moles KI we'll have 0.0789/2 = 0.03945 moles PbI2
Step 7: Calculate mass of PbI2
Mass PbI2 = moles PbI2 * molar mass PbI2
Mass PbI2 = 0.03945 moles * 461.01 g/mol
Mass PbI2 = 18.19 grams
Answer:
Explanation:
Hello,
In this case, we write the reaction again:
In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:
Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:
But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:
Best regards.
a. HCI
b. KOH
c. HNO
d. Mg(OH),
Answer and Explanation:
1. Arrhenius Theory which describes the concept protonic. The substance that gives H+ ions when diluted in water is called as an acid (e.g. HCl) and the substance that dissociates OH-ions whenever it is diluted in water is called as the base (e.g. NaOH)
on the other hand
Bronsted Lowery Theory describes the concept of a proton donor-acceptor. The proton-donating species is an acid and the proton-accepting species is known as a base.
2. The Chemical name and nature of acid is shown below:-
Nature Chemical Name
a. HCl Acidic Hydrochloric Acid
b. KOH Basic Potassium hydroxide
c. HNO Acidic Nitric Acid
d. Mg(OH)2 Basic Magnesium hydroxide
Answer: The value of equilibrium constant for the net reaction is 11.37
Explanation:
The given chemical equations follows:
Equation 1:
Equation 2:
The net equation follows:
As, the net reaction is the result of the addition of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:
We are given:
Putting values in above equation, we get:
Hence, the value of equilibrium constant for the net reaction is 11.37