"For the lowest harmonic of pipe with two open ends, how much of a wavelength fits into the pipe’s length?"

Answers

Answer 1
Answer:

Answer:

0.5 lambda(wavelength)

Explanation:

We know that

The first harmonic for both side open ended pipe is

L= 1/2lambda

So L = 0.5*wavelength


Related Questions

While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, causing it to start sliding downward, starting from rest. If it starts 4.25 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 22.0 N?
Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static friction between the crate and the floor is 0.57. Express your answer using two significant figures.
Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.2 = constant. The initial volume is 0.1 m3 and the work for the process is 50 kJ. Assuming ideal gas behavior, and neglecting kinetic and potential energy effects, determine heat transfer, in kJ, and the entropy change, in kJ/K.
An airplane is in level flight over Antarctica, where the magnetic field of the earth is mostly directed upward away from the ground. As viewed by a passenger facing toward the front of the plane, is the left or the right wingtip at higher potential? Does your answer depend on the direction the plane is flying?
A conducting sphere has a net charge of -4.8x10-17 C. What is the approximate number of excess electrons on the sphere?

If 3.00 ✕ 10−3 kg of gold is deposited on the negative electrode of an electrolytic cell in a period of 2.59 h, what is the current in the cell during that period? Assume the gold ions carry one elementary unit of positive charge.

Answers

Answer:

0.158 A.

Explanation:

Mass of gold deposited = 3 x 10^-3 kg

= 3 g

Molar mass = 196 g/mol

Number of moles = 3/196

= 0.0153 mol.

Faraday's constant,

1 coloumb = 96500 C/mol

Quantity of charge, Q = 96500 * 0.0153

= 1477.04 C.

Remember,

Q = I * t

t = 2.59 hr

= 2.59 * 3600 s

= 9324 s

Current, I = 1477.04/9324

= 0.158 A.

Answer:

0.158A

Explanation:

Using Faraday's first law of electrolysis which states that the mass(m) of a substance deposited or liberated at any electrode is directly proportional to the quantity of charge or electricity (Q) passed. i.e

m ∝ Q

m = Z Q

Where;

Z is the proportionality constant called electrochemical equivalent.

Faraday also observed that when 1 Faraday of electricity is equivalent to 96500C of charge.

Also,

Quantity of charge (Q), which is the product of current (I) passing through and the time taken (t) for the electrolysis, is given by;

Q = I x t;         ----------------------(i)

With all of these in place, now let's go answer the question.

Since the gold ions carry one elementary unit of positive charge, now let's write the cathode-half reaction for gold (Au) as follows;

Au⁺ + e⁻ = Au  ---------------------(ii)

From equation (ii) it can be deduced that when;

1 Faraday (96500C) of electricity is passed, 1 mole of Au forms ( = 197 grams of Au)   [molar mass of Au = 197g]

Then, 3.00 x 10⁻³ kg (= 3 g of Au) will be formed by 3g x 96500C / 197g = 1469.5C

Therefore, the quantity of charge (Q) deposited is 1469.5C

Substitute this value (Q = 1469.5C)  and time t = 2.59h (= 2.59 x 3600 s) into equation (i);

Q = I x t

1469.5  = I x 2.59 x 3600

1469.5  = I x 9324

Solve for I;

I = 1469.5 / 9324

I = 0.158A

Therefore, the current in the cell during that period is 0.158A

Note:

1 mole of gold atoms = 176g

i.e the molar mass of gold (Au) is 176g

Go to his profile and roast the mess out of him plzz 403665fl 50 points

Answers

Answer:

ok

Explanation:

Light from a sodium lamp (λ = 589 nm) illuminates two narrow slits. The fringe spacing on a screen 150 cm behind the slits is 4.0 mm. What is the spacing (in mm) between the two slits?

Answers

The spacing between the two slits is 0.221mm.

The spacing  between the two slits is given as,

                    D=(\lambda L)/(y)

Where \lambda is wavelength, y is fringe spacing and L is length of screen.

Given that, \lambda=589nm,L=150cm,y=4mm

Substitute in above equation.

               D=(589*10^(-9)*150*10^(-2)  )/(4*10^(-3) )\n \nD=2.21*10^(-4) m\n\nD=0.221mm

Hence, the spacing between the two slits is 0.221mm.

Learn more about the sodium lamp here:

brainly.com/question/24867424

Three children want to play on a see saw that is 6 meters long and has a fulcrum in the middle. Two of the children are twins and weigh 40 kg each and sit on the same side at a distance 2m and 3m away from the fulcrum. The other child weighs 80 kg. How far away should he sit from the fulcrum so that the see saw is balanced

Answers

Given Information:

mass of child 1 = m₁ = 40 kg

distance from fulcrum of child 1 = d₁ = 2 m

mass of child 2 = m₂ = 40 kg

distance from fulcrum of child 2 = d₂ = 3 m

mass of child 3 = m₃ = 80 kg

Required Information:

distance from fulcrum of child 3 = d₃ = ?

Answer:

distance from fulcrum of child 3 = 2.5 m

Explanation:

In order to balance the see-saw, the moment of force should be same on both sides of the fulcrum.

Since 2 children are sitting on one side and only 1 on the other side

F₁d₁ + F₂d₂ = F₃d₃

Where Force is given by

F = mg

m₁gd₁ + m₂gd₂ = m₃gd₃

m₁d₁ + m₂d₂ = m₃d₃

Re-arrange the equation for d₃

m₃d₃ = m₁d₁ + m₂d₂

d₃ = (m₁d₁ + m₂d₂)/m₃

d₃ = (40*2 + 40*3)/80

d₃ = 2.5 m

Therefore, the child on the other side should sit 2.5 m from the fulcrum so that the see-saw remains balanced.

(a) How fast and in what direction must galaxy A be moving if an absorption line found at 550 nm (green) for a stationary galaxy is shifted to 450 nm (blue) for A? (b) How fast and in what direction is galaxy B moving if it shows the same line shifted to 700 nm (red)?

Answers

Explanation:

For Part (a)

Since the apparent wavelength decreases hence galaxy moving towards the stationary observer.

Δλ/λ=v/c

=(v)/(c)\n v=(550-450)/(550)*3*10^(8)\n v=5.4545*10^(7)m/s

For Part (b)

Since the apparent wavelength increases hence galaxy moving towards the stationary observer.

Δλ/λ=v/c

=(v)/(c)\n v=(700-550)/(550)*3*10^(8)\n v=8.1818*10^(7)m/s

Observer 1 rides in a car and drops a ball from rest straight downward, relative to the interior of the car. The car moves horizontally with a constant speed of 3.80 m/s relative to observer 2 standing on the sidewalk.a) What is the speed of the ball 1.00 s after it is released, as measured by observer 2?

b) What is the direction of travel of the ball 1.00 s after it is released, as measured relative to the horizontal by observer 2?

Answers

a) 10.5 m/s

While for observer 1, in motion with the car, the ball falls down straight vertically, according to observer 2, which is at rest, the ball is also moving with a horizontal speed of:

v_x = 3.80 m/s

As the ball falls down, it also gains speed along the vertical direction (due to the effect of gravity). The vertical speed is given by

v_y = u_y + gt

where

u_y =0 is the initial vertical speed

g = 9.8 m/s^2 is the acceleration of gravity

t is the time

Therefore, after t = 1.00 s, the vertical speed is

v_y = 0 + (9.8)(1.00)=9.8 m/s

And so the speed of the ball, as observed by observer 2 at rest, is given by the resultant of the horizontal and vertical speed:

v=√(v_x^2 +v_y^2)=√((3.8)^2+(9.8)^2)=10.5 m/s

b) \theta = -68.8^(\circ)

As we discussed in previous part, according to observer 2 the ball is travelling both horizontally and vertically.

The direction of travel of the ball, according to observer 2, is given by

\theta = tan^(-1) ((v_y)/(v_x))=tan^(-1) ((-9.8)/(3.8))=-68.8^(\circ)

We have to understand in which direction is this angle measured. In fact, the car is moving forward, so v_x has forward direction (we can say it is positive if we take forward as positive direction).

Also, the ball is moving downward, so v_y is negative (assuming upward is the positive direction). This means that the direction of the ball is forward-downward, so the angle above is measured as angle below the positive horizontal direction:

\theta = -68.8^(\circ)